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1. Introduction and Motivation

Planck energy scale is still far beyond current experimental possibilities. Invariance under
Lorentz and CPT transformations is a fundamental requirement of local relativistic quantum field
theories, including the Standard Model (SM) of particle physics. A question of interest is whether
the Lorentz symmetry remains valid at these extremely high energies, whose answer certainly
would be useful whenever building grand unified theories, in which general relativity were con-
sistently accommodated. Here, we study a reminiscent of this possible symmetry violation, in-
corporated in the body of the so-called Standard Model Extension (SME). The radiation sector
from the SME, which incorporates in its Lagrangian terms with vector and / or background ten-
sor fields, has been studied, including several experimental data. There is a great deal of efforts
to detect parameters associated with background tensor and vector fields and to set upper bounds
for these parameters [, O, B]. Experimental searches for Lorentz violation in Cherenkov [H], and
synchrotron [H] radiations, cosmic microwave background [0], among many others,have seen re-
ported. Theoretical proposals have emerged to investigate ways to measure parameters of violation
of the SME through the confinement of electromagnetic waves, for example, in resonant cavities
and waveguides [B, O, B] the latter being the subject of interest in this work. We present some
properties of electrodynamic model that violate Lorentz symmetry but preserves CPT. We analyse
such a model in two types of waveguides, which rectangular cross section and the so called coaxial
transmission line and rectangular waveguide, which exhibit distinct modes of propagation of elec-
tromagnetic waves. The parameters associated to the Lorentz breaking, considering our proposed
solution, alter the properties of the radiation within the guide, which is evidenced in the equations
of modified electrodynamics to describe the dynamics of waves.

2. The Model and its basic features

The SM of elementary particles describes all fundamental particles and their interactions (ex-
cept gravity). His extension proposed in recent decades, the SME, shares the same properties
of the SM (such as conservation of energy and momentum, microcausality, renormalizability by
power counting and others), except that the symmetries of Lorentz and CPT can be violated [H]. In
this work, our attention is devoted to radiation sector (or pure-photon sector) of the SME, whose
lagrangian has two terms beyond the Maxwell’s model (without sources), namely:

1 v 1 KA v
Liotal = _ZF,quu - Z(kF)Kkqu FH ) (2.1)

The tensorial object of rank 4, (k)3 v, has no dimension and is assumed as a set of con-
stants coupling the electromagnetic tensor to itself (a kind of correction to the usual kinetic term,
(%FMVF HV). This object has the symmetries of the Riemann’s curvature tensor,

(kp)"VoP = (kp)*PHY = —(kp)VHOP = (k) VPO, (2.2)

the Bianchi identity for rank 4 tensors: (kp)*V* + (kp)*BV® 4 (kp)#*BY = 0, and also zero double
trace, (kr)uv"" =0, so that the 256 components that constitute only 19 are linearly indepen-
dent. Experimental tests require more precise limits on the size of the parameters, and the best
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estimates have been obtained from measurements of cosmological birefringence of light, so that
| (kar)*V®P |< 10732 [M]. That is, the violations described herein would be extremely small and
therefore, difficult to be detected, which on the other hand, gives them some possibility of real
existence [[]. The motion equation derived from the lagrangian,

OuF &+ (kp) papyd*FFPY =0, (2.3)

and the Bianchi identity,
uF*Y =0, (2.4)

form a set of linear equations in the tensor F*¥ and potential A*, which give us the modified
Maxwell’s equations where the discrete symmetry CPT is preserved.

Our attention will be devoted to a submodel which we setting a component of tensor (kr)
odd under parity (and under time reversal) is one of which lead to birefringence: (kF)0123. By
analyzing all those that relate to this through the symmetries of the tensor background, we obtain a
set of equations that relate its components. In particular we choose only the case where (kp)“"o‘l3
has index i, v, a, B completely different. Assuming it follows the analysis of some parameters
that couple the electric and magnetic field in the lagrangian (1), where there is an explicit coupling
in E and B. This submodel, which is the main focus of this work, includes corrections depending
on the direction we take to the electromagnetic waves, as we shall see later in this article. In this
submodel we have three components, two of which are related by the symmetry of Riemann tensor
and the Bianchi identity for tensors of rank 4 as in the following equation:

(kF>0123 + (kF>0312 + (kF)0231 —0. (25)

Naming (kr )2 =&, (kp)®'2 = p e (kr)"?*! = 5. It is convenient to use these coefficients to
write the modified Maxwell’s equations in vacuum as 3-vector formalism in cartesian coordinates:

V.-E =2£0,B, —2pd.B.—209,B,, (2.6)

§x§—&ﬁ

(289B+2pdyE, —200.E, )%+
+ (280.E, —2p0E. +2009,By)y +
+ (—280,E, +2p9,B,+200:E))Z, 2.7)

All equations have linear corrections in the parameters associated to Lorentz breaking, even
in the static limit. The equations coming from the Bianchi identity remain unchanged. The fields
appear as sources for themselves with new derivative that appear on the right side.

3. Modified electrodynamics in a coaxial transmission line

In this section we studied the confinement that occurs inside a coaxial transmission line. This
consists of a long straight conducting cylinder of radius a surrounded by a hollow cylindrical sur-
face also conductive, with constant radius b and also constant cross section, and b > a. In the
coaxial cable, it is possible the propagation of electromagnetic waves in transverse electromagnetic
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modes (TEM), characterized by the nullity of components of electric and magnetic fields in the
direction of the waveguide, or E, = B, = 0. [[2, [3].
For the equations 8 and 2 we supposed solutions like:

E(x,y,2,1) = Ep(x,y)e'®= @) (3.1)
B(x,y,z2,1) = By(x,y)e k=) (3.2)

Setting £, = B, = 0 and replacing (Bl) e (B22) in modified Maxwell’s equations, we obtained the
corrections associated to frequency (or the dispersion relation), @ =| £ | (14| £ — ¢ |), and through
this, considering only leading order corrections, we calculate the group and phase velocities (coin-
cidentally, the same), Vgroup = Vphase = c(12 | & — 0 |). There are two values for the velocities (two
modes of propagation), one of which is supraluminal. The parameter p does not appear explicitly
in the corrections. This fact makes no charge for this parameter, which in principle can be null
or not according to the symmetry (Z3) that shows the dependency between the three parameters,
& + p + o = 0. For simplicity, we assume solutions of the equations (Z8)-(Z2) as the solutions of
the equations of electrostatics and magnetostatics in cylindrical coordinates, with corrections in the
frequency. After an expansion in power series, considering only the dominant corrections, the real
part of each field takes the form:

A kz — o't)§ — 0 |Apw'tsin (kz— @'t)§
ocos (kz )si|§ | Agw't sin (kz )S+@>
s s

E =

(1&—0cP) (3.3)

Agcos (kz — a't)d n | & — o |Agw'tsin (kz— a't) ‘o
cs cs

B= (1&—c ). (3:4)
where @' =] k | the frequency that is obtained in the usual electrodynamics. Using the equations
(B3) and (B4) we obtain the time-averaged Poynting vector and the total radiated power with
dominant corrections:

o A? )

(S) :ﬁU?\5—6[005(21{1)]2—1—6’(]6—0‘] ). (3.5)

The radiated power (time average) calculated using the Poynting vector is:

Az (b )

(P) :C1n(a>[1:F\é—o\cos(Zkz)]—&-ﬁ(]cﬁ—G] ). (3.6)
We see that these quantities have their values increased or decreased by small corrections linear in
the parameters. Paying attention to the radial coordinate, s, we see that we can get more disparate
values of the usual electrodynamics if the waveguide radius is extremely small. This is due to the
fact that the parameters associated with the breaking of Lorentz hitherto not been detected and
obtained more reliable values of cosmological measurements impose limits on the order of 10732
[]. For example, a guide with radius s ~ 10~%m would lead to corrections in irradiance by a
factor of 10'6 x [| & — o | cos(kz)]. The contribution associated with the breaking of Lorentz is
evidenced also by the oscillation of the values of both the irradiance and power in the direction of
the guide, since the term o cos(kz) does not appear in the usual results. Such differences allow to
set limits for experimental parameters of breaking, or detect them.
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4. Modified electrodynamics in a rectangular waveguide

In a rectangular waveguide, the electromagnetic waves propagate in the cavity of the waveg-
uide. We assume infinite length (z direction) so there are no edge effects. We assume that the walls
of the guide are perfectly conducting (infinite conductivity), so that the electric field parallel to the
wall vanishes, and the magnetic field perpendicular to these also vanishes, which formally follows
from the boundary conditions, which are a consequence of Maxwell’s equations homogeneous,
unchanged for the breaking of Lorentz symmetry. As written: E/l = 0, BL = 0. The boundaries of
the guide (in Cartesian coordinates) are: x =0, x =a e y =0, y = b. It is reasonable to assume
general forms for the fields in the rectangular guide, for waves in the direction z (k = k;). For
simplicity we take as proposed solution for each field, the "ansatz" [@]:

E = (E&+E§+Ez£)e*k) 4.1
B = (B.£+ B, + B.2)e! k@) (4.2)

this proposal associate corrections with the transverse components of the amplitudes which con-
tains the fields transverse to the direction of motion and axial components. Corrections should
contribute via relation between @ and k. Here we see that the dominant corrections are all linear.
Replacing the proposed solution in the modified Maxwell’s equations we obtain the differential
equations for the axial components, which determine the dynamics of the fields:

20k* —2EK> 2Ek? — 20Kk>
(03 +0;+ 0 —K)E.+ <w2_k§+2o> 9’B, + (iﬂ-kZ +2§>8§BZ+

4¢ wk
+wf_kzaxayEZ +2p(®* —k*)B, =0 4.3)

20w% +2EK? 26 w? —20Kk?

+4(6—5)(0k

o kB =0. 4.4)

Unlike the usual case, we have a coupled system of linear differential equations of second order.
These equations recover the usual case when the three parameters vanish. However, one can not
say that they should be zero simultaneously. Until now we could choose any sub-model with
& =0,0r p =0, or 6 =0, respecting the symmetry of the equation (Z3), which prohibits the three
parameters have the same sign or nullify two of them. The solutions (if any) of (E3) and (E4),
which satisfy the boundary conditions of the waveguide, are not easy to be obtained analytically
and numerically neither, since the parameters are very small and would be difficult to analyze the
differences between these results and the usual case, for example, graphically, which justifies the
analytical approach in the search for electric and magnetic transverse modes, which have simpler
equations.
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4.1 Transverse magnetic modes

Transverse magnetic (TM) modes are obtained by making B, = 0. Initially, the usual case
is recovered with the three parameters being null. Through a solution in the form of plane wave
(E33), we obtained a dispersion relation with a small correction as regards the result known in the
usual electrodynamics (where the parameters vanish), particularly only & = 0 already covers the
usual case. This same equation leads to the usual cutoff frequency [, [3]. However, the equation
(E4) leads to the zero cutoff frequency. The group and phase velocities obtained through (E-4) not
recover the usual case and not presents small corrections, but lead to macroscopic values distinct
of the usuals ones. In this way each equation arising from (E3) and (E4) implies different phys-
ical consequences. Assuming non nullity of these parameters there are strange values of physical
quantities (such as phase and group velocities), not recovering the usual case.

4.2 Transverse electric modes

We obtain the transverse electric (TE) modes by setting E, = 0. Thus, we have two differential
equations for the axial magnetic component, which lead to results that do not agree with the usual
electrodynamics. In these modes there is a zero cutoff frequency such as in the TE mode in one
of the equations. Therefore, by assuming the parameters p, & and ¢ are not null, we calculated
the phase velocities and group velocities. These velocities are different from usual calculated by
equation (E3). Through (E4) we have only very small corrections.

5. Conclusions and perspectives

Inside a coaxial transmission line, our findings indicate that Lorentz-breaking implies in small
modifications of these usual results, perhaps beyond current experimental detection. In a waveg-
uide of rectangular shape, the partial differential equations which describe the axial components
of the fields in the waveguide are quite different from the usual and a dynamic modified of each
mode are very complicated and the results show that physical quantities have been drastically al-
tered since the parameters are assumed to be non-null. However there is motivation to study the
rigorous validity of the plane-wave solution for this submodel and understand the reason for these
discrepancies.
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