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In this paper we analyze the structure of the physical Hilbert space of a 2+1 dimensional BF

model starting from a Hilbert spaceH0 of wave functionals which are gauge invariant, ie, the

Gauss constraintG is considered to be already fulfilled. We see then that inH0 we have only the

empty vector as a solution of the curvature constraint and wehave to construct a larger space. This

will be the dualS⋆ of a dense subspaceS⊂H0. It is convenient to define an operatorP, sometimes

called “projector”, which is a surjective mapping from the spaceS to the physical Hilbert space

Hfis, subspace of the dualS⋆. If we can build the “projector”P we have enough to define the

inner product in spaceHfis. In this work we see that the imposition of the curvature constraintF

on the wave functional|Ψ〉 can be explicitly calculated with the aid of the Schwartz’s theory of

distributions. We use the technique known as group averaging in order to construct the projector

and the physical Hilbert space, from a generalization to thepresent situation of the solution of a

system of equations for Schwartz’s distributions of one real variable.
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1. Introduction

In this work we analyze the structure of the physical HilbertspaceHfis of a 2+1 dimensional BF
model [1, 2], ie, build the space in where one defines the wave functionals that obey the canonical
constraints generators of symmetriesG (Gauss constraint) eF (curvature constraint).

It is noteworthy that this work is a preliminary study where we use the results of Perez [3] to
verify that our projectorP constructed via the Schwartz theory of distributions has the same form
of the projector obtained by Perez [3, 4].

2. The 2+1 dimensional BF model

The action of the BF model, invariant by diffeomorphisms andgauge transformations, is writ-
ten as:

SBF = Tr
∫

MD

B∧F(A) (2.1)

whereB is an 1-form andF is the Yang-Mills curvature. The hamiltonian completely constrained
can be obtained through a procedure of canonical quantization, where:

H = G (λ )+F (η) (2.2)

makes clear that the dynamics of the theory is actually an arbitrary evolution given by the gauge
transformations generated by the constraints. We write them explicitly:

G (λ ) =
∫

d2x λ I(x)DaB̃a
I (x) (2.3)

F (η) =
1
2

∫

d2x ηI (x)εabF I
ab(x) (2.4)

With the subsequent quantization of the theory we can only obtain physical states and describe
observable operators if we can construct a physical HilbertspaceHfis from a kinematic spaceHkin,
which involves solving the constraints to the quantum level.

We then consider the basis vectors|s〉 = |Γ,~j ,~v〉 ∈ H0, whereH0 ⊂ Hkin. Writing Ψs = 〈A|s〉
explicitly:

Ψs[A] = 〈A|s〉 ≡

(

⊗

p

R( jp)(hγp[A])

)

·

(

⊗

q

viq

)

(2.5)

whereR( jp) are irreducible representations of the group of symmetries, which are functions of
hγp[A], the holonomies ofA on a graphγp. viq are the intertwinners, quantities that keeps the
vertices of the graph invariants. This basis, known as spin network[5, 6], is orthonormal and non-
enumerable.

3. The solution of the curvature constraint

Let’s take these|Ψ〉 ∈H0 to apply the second constraint of the theory, which is the zero spatial
curvature constraint:

εabFab|Ψ〉 = 0 (3.1)
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As the only solution (3.1) inH0 is the “null” vector|φ〉, corresponding to the empty graph[1], we
must seek a larger space. This will be the dualS⋆ of a dense spaceS, which is subspace of the space
H0. Hence, we introduce the Gelfand’s triple:

S⊂ H0 ⊂ S⋆ (3.2)

whereS is the vector space of all finite linear combinations of vectors |s〉 of the spin network basis
(2.5). AsS is dense inH0, this is the Cauchy completion of the spaceS. The dualS⋆ is composed
of linear formsΦ in the vectors ofS, with the notation of Schwartz:

Φ : |Ψ〉 ∈ S 7→ < Φ,Ψ > ∈ C (3.3)

It is convenient define an operatorP, sometimes called “projector” which is a surjective mapping
of spaceSto the physical Hilbert spaceHfis, subspace of the dualS⋆:

P : S→ Hfis ⊂ S⋆ (3.4)

whereHfis is formed by vectors that obey the constraint (3.1). The definition of the projectorP
is that every elementΦ of Hfis is invariant under the gauge transformationsg generated by the
constraint (3.1):

U(g)Φ = Φ (3.5)

U(g) is defined by duality, ie,∀ Ψ ∈ Swe have:

< U(g)Φ,Ψ > ≡ < Φ,U†(g)Ψ > = 〈Φ,Ψ〉 (3.6)

whereU(g) is a unitary representation of the elementg of the gauge group. Assuming that we can
build the “projector”P with the above properties, we have enough to define the inner product in
Hfis space:

〈Φ1,Φ2〉fis = < PΨ1,Ψ2 > (3.7)

whereΦ1,2 = PΨ1,2. It is shown [5] that ifΦ1,2 = PΨ′
1,2 (equivalence class), the physical inner

product is independent of this difference betweenΨ:

〈PΨ′
1,Ψ

′
2〉 = 〈PΨ1,Ψ2〉 (3.8)

the inner product of physical space does not depend on the correspondingΨ in spaceS.

4. An example in the theory of functions of one variable

This condition (3.1) on the wave functional|Ψ〉 can be calculated explicitly with the aid of the
theory of Schwartz distributions. [7],[8] Consider an analogue of this condition in the theory of
distributions of one real variable:

(x−a)T(x) = 0 (4.1)
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To this end, we write the Gelfand triple:

S⊂ L2 ⊂ S⋆ (4.2)

whereS is the Schwartz space, dense inL2, which is the space of rapidly decreasing functions that
we call test functions andS⋆ is the dual, which is the space of continuous linear functionals of these
test functions, the tempered distributions. So is the tempered distributionT ∈ S⋆ a linear functional
T : S→ C, than for aϕ ∈ S:

ϕ 7→ < T,ϕ > ≡
∫

dx T(x)ϕ(x) (4.3)

where the integral notation is symbolic. IfΨ(x) ∈ L2 we can write the value of the distribution as:

< Ψ,ϕ > =

∫

dxΨ(x)ϕ(x) (4.4)

where
∫

dx is the usual integral. The general solution of equation (4.1) is the distributionT(x) =

cδ (x−a), which can be verified directly by substitution. Let’s examine the more general equation:

f (x)T(x) = 0 (4.5)

The general solution of (4.5) for the case of zerosxi of orderni is:

T(x) = ∑
i

ni−1

∑
l=0

cil δ (l)(x−xi) (4.6)

Note that both non degenerating and degenerate cases, the coefficientsci or cil are completely
arbitrary. A particular solution in non-degenerate case, considered here for its simplicity, is:

T(x) = cδ ( f (x)) = c∑
i

1
| f ′(xi)|

δ (x−xi) (4.7)

Note that this property creates a restriction for the coefficientsci l of equation (4.6) so thatc
′
i

c′j
=

|
f ′(xj )
f ′(xi)

|. We can now represent the delta function as the Fourier transform of a constant and so the
particular solution (4.7) in the Fourier representation is:

T(x) = cδ ( f (x)) =
1

2π

∫

dk eik f (x) (4.8)

This result can be generalized to the degenerate case.
We saw how to solve the equationf (x)T(x) = 0 for one real variable, and for our purpose of

studying the conditionF (A)|Ψ〉 = 0 we have to take a system of equations for all real pointsx
where the connectionA is defined, through a procedure equivalent to a regularization of space.

5. The construction of the projector P

We got back to the projectorP (3.4). There is a technique known as group averaging [9],[3],
that allows the definition of this projectorP by a regularization in order to generalize the results to
the theory of distributions of a system of equations of one real variable.
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Figure 1: Figure 1: Cellular decomposition of the manifoldΣ, with a network element of widthε and a
plaquettep where we have an infinitesimal holonomyWp[A].

Be the groupG of all gauge transformations. Before treating the general case, we take a finite
groupG of N elements, and try to solve the condition of invariance underG:

U(g)|Ψ〉 = |Ψ〉 ∀U(g) ∈ G (5.1)

The solution of these equations is the average over the group:

|Ψ〉 =
1
N ∑

U∈G

U(g)|Ψ〉 ≡ P|Ψ〉 (5.2)

so P is nothing more than proportional to the sum of all transformations of the groupG. In the
case ofG be the group of unitary representationsU(g) of the gauge transformations fromF with
parametersNI(x):

U [N] = e
i
∫

d2x NI(x)F
I (x)

= eiF [N] (5.3)

whereF is the generator (2.4) of these gauge transformations, ie, the constraint (3.1). The pro-
jector P is the sum over all the possibleF gauge transformations, which generates a functional
integration inN. Formally:

P =

∫

DN e
i
∫

d2x NIF
I

= δ (F I (A)) (5.4)

Note the similarity of this result with equation (4.8) for one real variable that we found in a wholly
different context. This shows that taking a proper regularization, we can use the example of a
Schwartz’s distribution to build our projectorP (see Fig 1).

To define better the expression (5.4) we write first the constraint F (2.4) at the classical level,
as the limit of a Riemann sum:

F [N] =
∫

Σ
Tr[NF(A)] = lim

ε→0
∑
p

ε2Tr[NpFp] (5.5)

whereNp eFp are the values of the parameterN and the curvatureF in an interior point of the pla-
quettep (Fig. 1). The holonomyWp defined around the edges of the plaquettep can be calculated:

Wp[A] = 1+ ε2Fp(A)+O(ε3) (5.6)
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The equations (5.5) and (5.6) imply:

F [N] = lim
ε→0

∑
p

Tr[NpWp] (5.7)

With this, we will be able to express the regulated constraint around holonomies whose action on
the vectors ofH0 is well defined. With this result, we can write the inner product of spin network
states (3.7) projected into physical space, which will be ofthe form:

〈s′P,s〉fis = lim
ε→0

np(ε)

∏
p

∑
jp

(2 jp +1)〈s′ Tr[R( jp)(Wp)],s〉 (5.8)

where jp is the associated spin top-th plaquette andTrR( jp)(Wp) is the character of the unitary
irreducible representation of spinjp for SU(2). There is also in [9],[4] that the limitε → 0 exists.

This regulated expression is a linear form onHfis, and when these matrix elements are com-
puted on an invariant spin network basis they can be expressed as spin foams, as seen in [9],[3].
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