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In this paper we analyze the structure of the physical Hilbpace of a 2+1 dimensional BF
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Gauss constrair¥f is considered to be already fulfilled. We see then tha¥gwe have only the
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will be the dualS* of a dense subspa&e- 7. Itis convenientto define an operaR®rsometimes
called “projector”, which is a surjective mapping from thmaseS to the physical Hilbert space
Js, subspace of the du&. If we can build the “projectorP we have enough to define the
inner product in space#;. In this work we see that the imposition of the curvature tist. 7

on the wave functiongW) can be explicitly calculated with the aid of the Schwarthiedry of
distributions. We use the technique known as group avegagiorder to construct the projector
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1. Introduction

In this work we analyze the structure of the physical Hillspdices#; of a 2+1 dimensional BF
model [1, 2], ie, build the space in where one defines the wanetibnals that obey the canonical
constraints generators of symmetri@¢fGauss constraint) & (curvature constraint).

It is noteworthy that this work is a preliminary study where use the results of Perez [3] to
verify that our projectoP constructed via the Schwartz theory of distributions hasstime form
of the projector obtained by Perez [3, 4].

2. The 2+1 dimensional BF modedl

The action of the BF model, invariant by diffeomorphisms gadge transformations, is writ-
ten as:

Se=Tr| BAF(A) (2.1)

whereB is an 1-form and- is the Yang-Mills curvature. The hamiltonian completelynstained
can be obtained through a procedure of canonical quamtizatihere:

H=90\)+2(n) (2.2)

makes clear that the dynamics of the theory is actually aitranp evolution given by the gauge
transformations generated by the constraints. We write teeplicitly:

G = /dzx)\ | (X)DaBR(X) 2.3)

) = % / d?x ) (x)e3PF LX) (2.4)

With the subsequent quantization of the theory we can ontgiolphysical states and describe
observable operators if we can construct a physical Hikygates#;, from a kinematic spacez,,
which involves solving the constraints to the quantum level

We then consider the basis vecttss= |I", J,V) € ./, where % C #,. Writing Ws = (A]s)
explicitly:

Ws[A] = (Als) = (@R‘P (hy,| ]))-(@viq> (2.5)
q

where RU») are irreducible representations of the group of symmetrdsich are functions of
hy,[A], the holonomies oA on a graphy,. Vi, are the intertwinners, quantities that keeps the
vertices of the graph invariants. This basis, known as spiwark[5, 6], is orthonormal and non-
enumerable.

3. Thesolution of the curvature constraint

Let's take thes¢¥) € 7 to apply the second constraint of the theory, which is the gpatial
curvature constraint:

£3F,p|W) =0 (3.1)
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As the only solution (3.1) i is the “null” vector|@), corresponding to the empty graph[1], we
must seek a larger space. This will be the difabf a dense spac® which is subspace of the space
. Hence, we introduce the Gelfand’s triple:

SCcHpHCS (3.2)

whereSis the vector space of all finite linear combinations of vexts) of the spin network basis
(2.5). AsSis dense in#%, this is the Cauchy completion of the sp&erhe dualS is composed
of linear forms® in the vectors of5, with the notation of Schwartz:

P: W) eS—<PW>eC (3.3)

It is convenient define an operatBr sometimes called “projector” which is a surjective magpin
of spaceSto the physical Hilbert space;, subspace of the du&t:

P:S—J4,CS (3.4)

where 7 is formed by vectors that obey the constraint (3.1). The difinof the projectorP
is that every elemen® of J7; is invariant under the gauge transformatiangenerated by the
constraint (3.1):

U(g)d = (3.5)
U (g) is defined by duality, iey W € Swe have:
<U(@)d,¥>=<dUT(gW>=(d,¥) (3.6)

whereU (g) is a unitary representation of the elemgnf the gauge group. Assuming that we can
build the “projector”P with the above properties, we have enough to define the imoelupt in
s space:

<q31,q32>ﬁs =< PLP]_, l.|J2 > (37)

where®;, = PW,. It is shown [5] that if®,, = PW) , (equivalence class), the physical inner
product is independent of this difference betwdén

(PW,W5) = (PW1, W) (3.8)

the inner product of physical space does not depend on thespanding¥ in spaceS.

4. An examplein the theory of functions of one variable

This condition (3.1) on the wave function&) can be calculated explicitly with the aid of the
theory of Schwartz distributions. [7],[8] Consider an amale of this condition in the theory of
distributions of one real variable:

(x—a)T(x)=0 (4.2)
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To this end, we write the Gelfand triple:
ScLcS 4.2)

whereSis the Schwartz space, densed_i which is the space of rapidly decreasing functions that
we call test functions ang is the dual, which is the space of continuous linear funeti®of these
test functions, the tempered distributions. So is the teatpdistributionT € S* a linear functional
T:S—C,thanforap € S

O <T d>= /dx T(X)$ (X) 4.3)

where the integral notation is symbolic.W(x) € L, we can write the value of the distribution as:

<Wo>= /deIJ(x)q)(x) (4.4)

where [dxis the usual integral. The general solution of equation)(&.the distributionT (x) =
cd(x—a), which can be verified directly by substitution. Let's examthe more general equation:

f(X)T(x)=0 (4.5)

The general solution of (4.5) for the case of zexosf ordern; is:

ni—1

T=3 IZO ci 61 (x—x) (4.6)

Note that both non degenerating and degenerate cases, dfiientsc; or ¢; are completely
arbitrary. A particular solution in non-degenerate casasered here for its simplicity, is:

T(x)=cd(f(x) =c) mé(x—xi) 4.7)

Note that this property creates a restriction for the caefiits ¢;| of equation (4.6) so tha@ =
]
|%|. We can now represent the delta function as the Fourierfoansof a constant and so the

particular solution (4.7) in the Fourier representatian is
T(x) = c3(f(x)) = %T/dk k1) 4.8)

This result can be generalized to the degenerate case.

We saw how to solve the equatidiix)T (x) = O for one real variable, and for our purpose of
studying the conditionZ (A)|W) = 0 we have to take a system of equations for all real points
where the connectioA is defined, through a procedure equivalent to a regulaoizaif space.

5. The construction of the projector P

We got back to the projectd? (3.4). There is a technique known as group averaging [9],[3]
that allows the definition of this project& by a regularization in order to generalize the results to
the theory of distributions of a system of equations of o variable.
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Figure 1: Figure 1: Cellular decomposition of the manifdig with a network element of widtls and a
plaquettep where we have an infinitesimal holonom[A)].

Be the groupG of all gauge transformations. Before treating the genaxsécwe take a finite
groupG of N elements, and try to solve the condition of invariance urger

U@[¥)=I¥) vU(QeG (5.1)

The solution of these equations is the average over the group
1
W) =3 > U(Q¥)=P¥) (5.2)
N2

so P is nothing more than proportional to the sum of all transfations of the grougs. In the
case ofG be the group of unitary representatidiiég) of the gauge transformations frag with
parameterd\| (x):

N = ei /dzx N (X)F'(x)

Ul g7 (5.3)

where.Z is the generator (2.4) of these gauge transformationshéecanstraint (3.1). The pro-
jector P is the sum over all the possiblg gauge transformations, which generates a functional
integration inN. Formally:

: 2 |
P:/%/VeI/d NE sF ) (5.4)

Note the similarity of this result with equation (4.8) forereal variable that we found in a wholly
different context. This shows that taking a proper regméion, we can use the example of a
Schwartz’s distribution to build our projectér(see Fig 1).

To define better the expression (5.4) we write first the caimdt (2.4) at the classical level,
as the limit of a Riemann sum:

FIN] = /zTr[N F(A)] = lim S €2TrINoF;) (5.5)
p

whereN,, e F, are the values of the paramet¢and the curvatur€ in an interior point of the pla-
quettep (Fig. 1). The holonomy\, defined around the edges of the plaquettan be calculated:

Wo[A] = 1+ 2Fp(A) + O(&3) (5.6)
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The equations (5.5) and (5.6) imply:

ZN] = lim S Tr[NW| (5.7)
P

With this, we will be able to express the regulated constraiaund holonomies whose action on
the vectors of# is well defined. With this result, we can write the inner prodof spin network
states (3.7) projected into physical space, which will bthefform:

Np(€)

(SP.8) = lim [ 3 (2jp+1)(¢ TIRIW(W,)],9) (5.8)
E— P T

where j, is the associated spin foth plaquette and rRU») (Wp) is the character of the unitary

irreducible representation of spjg for SU(2). There is also in [9],[4] that the lim#& — O exists.
This regulated expression is a linear form.gfi, and when these matrix elements are com-

puted on an invariant spin network basis they can be expgtessspin foams, as seen in [9],[3].
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