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1. Introduction

Since the discovery by Achucarro and Townsend [1] and the elaborated work of Witten [2],
it is a sort of common sense to affirm that 3d gravity and Chern-Simons (CS) gauge theory are
equivalent, up to a total derivative (boundary terms), with Poincaré group being the underlying
gauge group. However, the difference between the two theories is that in 3d gravity the triad is
restricted to being invertible, whereas no such restriction exists in CS theory. Thus, We can think
about CS theory as an extension of 3d gravity including singular metrics or, alternatively, think
about 3d gravity as a restricted version of CS theory. Questions regarding the role of non-invertible
triad is far from being trivial [3].

A richer structure emerges by enlarging the local symmetry to the (anti) de Sitter group. In
this case, besides the standard action for 3d gravity, it is possible to construct an "exotic" action
equivalent to the former at the level of classical field equations. This peculiarity of CS gravity was
not unnoticed in original Witten’s paper.

In a more recent context, there exists an analogy with a well established (although polemic)
feature of Loop Quantum Gravity (LQG) knew as the Barbero-Immirzi parameter ambiguity [4, 5].
This analogy was studied in detail in [6], and represents the principal motivation of the present
work.

The plan of the paper is as follows. In the next section, the basic tools to cast 3d gravity
with or without cosmological constant as a Chern-Simons gauge theory will be presented, and the
appearance of the Barbero-Immirzi parameter will be explained. In Section 3 the main argument of
the paper will be presented, in which we consider the positive cosmological constant model. The
detailed canonical analysis of constrained theory will be developed. The last section is reserved to
some comments about gauge fixing reduction and quantization of the model in the spirit of LQG,
as well as the conclusions of the work.

2. Gravity from Chern-Simons theory with Barbero-Immirzi-like ambiguity.

To begin with, let M be an orientable three-dimensional manifold with a trivial tangent bundle.
In addition, let G be the gauge group and g its Lie algebra equipped with a non-degenerate invariant
quadratic form 〈·, ·〉 (inner product on the Lie algebra).

The CS action is defined as

S =−κ

2

ˆ
M
〈A,dA+

2
3
A∧A〉. (2.1)

where A = Aµdxµ is a g-valued 1-form connection and κ a dimensionless constant.1 The field
equations read F = 0, with F ≡ dA+A∧A is, by definition, the field strength 2-form; this means
that CS theory is topological with no truly propagating degrees of freedom. By construction, CS
action is diffeomorphism invariant.

1In what follows Greek indices µ , ν , . . . run from 0 to 2 and Latin indices from the beginning of the alphabet a, b, . . .
takes values 1, 2. Three dimensional Lorentz frame indices are denoted by Latin capital letters I, J, . . . running from 0
to 2. Our convention for the space-time metric is ηIJ = diag(σ ,1,1). Where σ = ±1 allows us to switch between the
Euclidian and Lorentzian cases, respectively.
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Next we assume M to be of topology Σ×R, where Σ is a two-dimensional manifold repre-
senting physical space, and R the real line representing time. The Hamiltonian formalism can be
achieved by splitting the connection into its temporal and spatial components: A= Atdx0 +Aadxa.
Replacing this into (2.1) the action can be written as

S =−κ

2

ˆ
R

dx0
ˆ

Σ

〈Ȧ,A〉+2〈At ,F〉, (2.2)

where A=Aadxa is the spatial connection and F= dA+A∧A the associated spatial field strength.
Three-dimensional gravity meets CS theory when we choose as underlying gauge symmetry

the Poincaré group ISO(1,2). In this case, the connection is written as A= eIPI +ω IJI , where e is
the triad and ω the spin connection, whereas PI and JI correspond to the generators of translations
and rotations of ISO(2,1), respectively. We can go further and include a positive (negative) cos-
mological constant Λ by enlarging the gauge symmetry to the (anti) de Sitter SO(3,1) (SO(2,2))
group. In any case, the generators will satisfy the general Lie algebra given by [JI,JJ] = εIJ

KJK ,
[JI,PJ] = εIJ

KPK and [PI,PJ] = σΛεIJ
KJK .

A special feature of the SO(3,1) is the possibility to define two non-degenerate quadratic forms
in the algebra. These are given by the Casimir invariants of the algebra

C = η
IJPIJJ and C ? = η

IJ(
σ

Λ
PIPJ + JIJJ). (2.3)

The inner product defined by C is non degenerate for all Λ, whereas C ? is non degenerate only for
Λ 6= 0.

Starting with (2.1), we can write an action for each Casimir invariant form, these are,

S = −κ

2

ˆ
M

[
ėω + ω̇e+2et(R+Λe2)+2ωtT

]
, (2.4)

S? = −κ

2

ˆ
M

[
σΛėe+ ω̇ω +2σΛetT+2ωt(R+Λe2)

]
. (2.5)

It can be recognized in S the standard action for 3d gravity. On the other hand, S? can be considered
a kind of "exotic" 3d gravity in the sense that, despite being inequivalent to the standard one, it
shares the same field equations. It makes perfect sense to add the exotic action, with an arbitrary
coefficient γ , to the standard action, so the general action would be, S = S− 1

γ
S?.

It is worth noticing that the equivalence can be established only at the level of field configura-
tions, but this is not true at the level of the structure of the phase-space. In [6] this intriguing model
was studied in detail within the context of LQG, where the appearing of γ is compared with the
arbitrariness of the Barbero-Immirzi parameter [5].

This completes our brief description of Chern-Simons formulation of 3d Gravity and the origin
of the γ parameter.

3. Chern-Simons gravity with positive cosmological constant

In what follows we will restrict the model to the Λ > 0 sector. (The case of negative cosmo-
logical constant can be constructed analogously.) Also, we have kept open the possibility to switch
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between the Euclidian and Lorentzian theories by introducing the parameter σ =±1, so the gauge
group would be SO(4) or SO(3,1), respectively.

Let’s start writing the spatial connection as A = Ai
1Ki +Ai

2Li, where Ki are the generators of
boosts and Li the generators of rotations of the SO(3,1) (SO(4)) group that satisfy the Lie algebra
[Li,L j] = εi j

kLk, [Li,K j] = εi j
kKk and [Ki,K j] = σεi j

kLk. Here i, j, take values 1, 2, 3 and are
raised or lowered with the delta Kronecker δi j.

The dictionary to restore the triad and spin connection is

K = (J2,−J1,P0/
√

Λ), L = (P2/
√

Λ,−P1/
√

Λ,σJ0); (3.1)

A1 = (ω2,−ω1,
√

Λe0), A2 = (
√

Λe2,−
√

Λe1,σω0). (3.2)

As before, the non degenerate quadratic forms in the algebra are given by the two Casimirs of
the group, then it can be shown that 2 〈A,B〉=A1 ·B2 +A2 ·B1 and 〈A,B〉? = σA1 ·B1 +A2 ·B2

With all these, the general action can be written as

S =−κ

2

ˆ [
Ȧ1 · (A2−

σ

γ
A1)+ Ȧ2 · (A1−

1
γ
A2)

]
−G1(At1)−G2(At2), (3.3)

where we are defining the smeared "constraints" (the reason of this denomination will be clear in a
moment)

G1(ε)≡ κ

ˆ
ε · [F+

σ

2
A1×A1−

σ

γ
DA1], G2(ε)≡ κ

ˆ
ε · [DA1−

1
γ
(F+

σ

2
A1×A1)], (3.4)

together with F= dA2 +A2∧A2 and DA1 = dA1 +[A2,A1].
Let’s write gauge fields as two component vectors At = (At1,At2) and A = (A1,A2). Now, if

we introduce the matrix

∆
αβ =

(
−σ/γ 1

1 −1/γ

)
, (3.5)

with α, β = 1, 2, then (3.3) adopts the form of the standard CS action,

S =−κ

2

ˆ
∆

αβ
(
Ȧα ·Aβ +2Atα ·Ωβ

)
, (3.6)

where Ω = (DA1,F+ σ

2 A1×A1) is the field strength associated with A.
As before, it is convenient to define the smeared version of the constraints

F1(ε)≡ κ

ˆ
ε ·DA1, F2(ε)≡ κ

ˆ
ε · (F+

σ

2
A1×A1). (3.7)

The relation between the G -base and the F -base is simply G = ∆F .
Applying the Dirac-Bergman’s algorithm for constrained system [7], we obtain the symplectic

structure of the phase-space described by the Dirac brackets

{Ai
aα(x),A

j
bβ
(y)}D =− 1

κ
∆αβ εabδ

i j
δ

3(x−y). (3.8)

2Since all group indices are contracted with the three dimensional metric δi j, it is convenient adopting vector-like
notation AiBi = A ·B, [A,B] = A×B, etc.
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From these relations we can see that half of the Ai
aα play the role of momenta, thus the original

24-dimensional phase-space would be reduced to the half.
The Hamiltonian would be

H = F (At)+uα χ
α + vα χ

tα = G1(At1)+G2(At2)+uα χ
α + vα χ

tα , (3.9)

where F (At) = ∆αβ Fα(Atβ ) and uα , vα stand for lagrange multipliers. From here we can see that
the Hamiltonian is fully constrained. The algebra of the constraints closes under Dirac brackets as
can be see from {F (ε),F (ε ′)}D = F (ε× ε ′). This algebra adopts a more suggestive form in the
G -basis,

{G1(ε),G1(ε
′)}D =σG2(ε×ε

′), {G1(ε),G2(ε
′)}D =G1(ε×ε

′), {G2(ε),G2(ε
′)}D =G2(ε×ε

′).

(3.10)
We can recognize here the structure of so(3,1) (so(4)) Lie algebra, in total agreement with the
fact that in Dirac-Bergman formalism for constrained systems, first class constraints generate local
gauge transformations.

The infinitesimal gauge transformations generated by the constraints are

{G1(ε),A1}D = Dε, {G1(ε),A2}D = σε×A1; (3.11)

{G2(ε
′),A1}D = ε

′×A1, {G2(ε
′),A2}D = Dε

′. (3.12)

These relations look like the infinitesimal gauge transformations of a BF-theory with cosmological
constant, where A1 plays the role of the B-field. This makes sense because of the fact that 3d
gravity can be formulated also as a topological BF-theory.

The gauge transformations described above are related, on-shell, with local diffeomorphism.
This can be shown if we apply the Lie derivative to the gauge fields

£ξ (A1,A2) =
(
D(ıξA1)+(ıξA2)×A1,D(ıξA2)+σ(ıξA1)×A1

)
+ field equations, (3.13)

with £ = dıξ + ıξ d the Lie derivative. By comparison with (3.11) and (3.12) we can identify in-
finitesimal gauge transformations with parameters (ε,ε ′) = ıξ (A1,A2).

We can ask ourselves for the constraint algebra written in the more familiar F -basis. This can
be achieved by inverting G = ∆F from which we get F = ∆−1G , but it is useful to write instead
the normalized basis F̃ =−(det∆)∆−1G . With this, a direct calculation shows that

{F̃1(ε),F̃1(ε
′)}D = F̃1(ε× ε

′)+
1
γ
F̃2(ε× ε

′) (3.14)

{F̃1(ε),F̃2(ε
′)}D = F̃2(ε× ε

′)+
σ

γ
F̃1(ε× ε

′) (3.15)

{F̃2(ε),F̃2(ε
′)}D = σ(F̃1(ε× ε

′)+
1
γ
F̃2(ε× ε

′)). (3.16)

This time, it results less evident that the underlying symmetry corresponds to the SO(3,1) group
but, serves us to compare this algebra with the one reported in [6]. It is important to note that in
our model we are mixing the components e and ω according to relations (3.1) and (3.2).
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4. Concluding remarks.

The origin of the Babarbero-Immirzi ambiguity γ in Chern-Simons formulation of 3d Gravity
comes from the fact that it is possible to define two inequivalent inner products in the algebra
of the SO(3,1) group. Let’s notice, however, that in 4d gravity the gauge group corresponds to
local Lorentz rotations, whereas in 3d gravity corresponds to local Lorentz rotations and local
translation. Therefore, it is expected a qualitative difference of the meaning of γ in the 3d and 4d
gravity theories.

We elaborated a detailed analysis of the Λ > 0 sector of the theory. The case Λ < 0 is not
quite different, but technical difficulties to quantize the model are expected because of the non-
compactness of the SO(2,2) group.

After applying the Dirac-Bergman formalism for constrained systems, we ended with a first
class Hamiltonian (3.9) together with the symplectic structure (3.8). It was shown that first class
constraints generate local gauge transformations which at the same time are equivalent, on-shell,
to local diffeomorphisms.

The analogy between 3d CS gravity with Λ > 0 and 4d gravity suggest us to apply the methods
of LQG to quantize the theory. In spite of CS theory is considered a well-known toy model in gauge
field theory, the extension of the LQG machinery to quantize this theory was not fully exploited.
An interesting example of LQG-like quantization of CS theory was developed in [8] for a compact
gauge group. There is not a generally accepted method for non-compact groups. In 4d gravity
the quantization is accomplished by partial gauge fixing of the non-compact group[4] such that
the residual symmetry turns to be the SO(3) group. It is interesting asking about a gauge-fixing
strategy to seek out for the quantization of the generalized CS gravity considered in the present
work [9].
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