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We present European VLBI Network (EVN) observations at 5 GHzof the candidate binary black-

hole system SDSS J1536+0441. Both components, J1536+0441Aand J1536+0441B, observed

by the VLA at 8.5 GHz and separated by 0.97 arcsec are detectedwith high S/N, proving the

presence of two compact AGNs with radio luminosityLR∼ 1040 erg s−1. From a comparison with

published 8.5 & 22.5 GHz flux densities, we derive an estimateof the radio spectral index of the

two radio sources. Both sources have flat or inverted radio spectrum. In particular, J1536+0441A

has a rising spectrum up to≃ 30 GHz, rest frame. Given the moderate brightness temperature

derived from the flux and fitted size of J1536+0441A, we suggest that thermal free-free emission

from an X-ray-heated disc may be powering the radio emissionin J1536+0441A.
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1. Introduction

SDSS J153636.22+044127.0 (hereafter SDSS J1536+0441) is one of the binary black-hole
candidates found in a search for quasars displaying broad-lines features at different redshifts in
the Sloan Digital Sky Survey [4]. The optical spectrum showstwo sets of broad emission lines
at z= 0.3889 andz= 3727, and a third set of narrow absorption lines at the intermediate redshift
z= 0.3878. Narrow emission lines were detected associated only with the higher redshift system.
Radio observations carried out by the VLA at 8.5 GHz detectedtwo components, separated by
0
′′

.97 (5.1 kpc), named J1536+0441A and J1536+0441B respectively [14]. High resolution optical
imaging detected the optical counterpart of J1536+0441B, but any optical signature of an AGN in
this object was unclear and not conclusive [7, 11]. Different interpretations were suggested in order
to explain the rather complex optical features.

1. A black-hole binary (BHB) system within the same galaxy with a separation of 0.1 pc and
masses of∼ 107 and∼ 109 M⊙each with its own broad-line region and sharing the same
narrow-line region [4, 11]. In this scenario J1536+0441B isan elliptical galaxy, that can
be responsible for the absorption features detected in the overall optical spectrum but is not
contributing to the broad-line emission.

2. A AGN pair separated by 5.1 kpc and probably residing in a moderately rich cluster of
galaxies [7].

3. A double peaked emitter, albeit a peculiar one [5, 6, 9].

All these scenarios are critically discussed by Lauer & Boroson [11].

2. EVN Observations

To discriminate between the different interpretations given in the previous section is beyond
the capability of the VLBI. An angular resolution of 0.02 mascoupled with a sensitivity of a few
tens of microJy or better would be necessary to resolve and image the 0.1 pc BHB, and this is not
yet possible. Nonetheless, pc-scale imaging of J1536+0441can shed some light on the nature of
the two radio sources. We decided to target SDSS J1536+0441 exploiting the high sensitivity of
the EVN with the following main goals:

• Pinpoint the AGN/AGNs position.

• Identify the nature of the radio emission associated to the component J1536+0441B. At the
time of our EVN proposal no optical counterpart was known forJ1536+0441B.

• Image the parsec scale structure of J1536+0441A and J1536+0441B and derive the radio
spectral index properties using the available VLA/VLBA data.

To fulfill these goals we observed SDSS J1536+0441 at 5 GHz on 2009 October 23 for about
5 hours (on-source time). The observations were carried outat the 1024 Mbit s−1 sustained bit
rate reaching a 1σ r.m.s sensitivity of about 15µJy/beam with a resolution of about 10 mas. More
details on the observations, data analysis and discussion can be found in [3].
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Figure 1: EVN image at 5 GHz of the SDSS J1536+0441 field. This image was obtained applying natural
weighting yielding to a resolution of 14×7 mas at position angle 16◦. The 1σ r.m.s. noise is 15µJy/beam.
J1536+0441A, on the right, has a peak flux of 0.62 mJy/beam, J1536+0441B, on the left, has a peak flux of
0.22 mJy/beam.

3. Results & Discussion

Figure 1 shows the 5 GHz EVN image of the J1536+0441 field. We detected with high
signal-to-noise ratio both J1536+0441A and J1536+0441B (S/N = 40 and S/N =15, respectively).
The field was also imaged with a different weighting scheme allowing better resolution (∼ 7×
5 mas) but a larger noise. The sources were fitted with two-dimensional elliptical Gaussians
obtaining consistent results between images with different resolutions. The derived flux densi-
ties at 5 GHz, positions and errors are: for J1536+0441AS= 0.72± 0.06 mJy, α(J2000) =

15h36m36s.2232,δ (J2000) = +04◦41′27′′.069, andσVLBI = 0.003 mas; for J1536+0441B,S=

0.24±0.03 mJy,α(J2000) = 15h36m36s.2881,δ (J2000) = +04◦41′27′′.054, andσVLBI = 0.003
mas. J1536+0441A appears slightly resolved with a deconvolved fitted size≃ 3.2×2.5 mas with
an estimated error of 1 mas.

In Table 1 we have collected the radio flux densities available at different frequencies in the
literature for J1536+0441A and J1536+0441B. Table 1 lists measurements made with different
resolutions (arcsec scale for VLA obervations compared to milli-arsec scale for VLBI observations)
and usually at different epochs. While it can be dangerous todraw conclusions on the details of the
radio spectral properties of J1536+0441A and J1536+0441B,these data are adequate to describe
the general trend of the spectral index of the two components. Moreover, the VLBA observations
at 8.5 GHz [15] have been carried out 9 days earlier than our 5 GHz EVN observations and with
a similar resolution (within a factor of a few), therefore these flux densities can be considered
unaffected by variability or resolution issues.

J1536+0441 is not detected in the FIRST survey [13], and the flux density at 1.4 GHz in
Table 1 is a 4σ upper limit at the position of the radio source. Since the resolution of the FIRST
survey is 5 arcsec the upper limit includes both the radio components.

As far as concern J1536+0441B the only thing we can say is thatthe data so far available sug-
gest a flat radio spectrum between 1.4 GHz and 8.5 GHz. The optical counterpart of J1536+0441B
is very red [7, 11] and the detection of a pc-scale unresolvedflat spectrum radio core with observed
radio luminosityLR = νLν = 0.6×1040 erg s−1 at 5 GHz is best interpreted as an obscured AGN
rather than an elliptical galaxy.

The almost contemporaneous radio flux densities measured onsimilar scales at 5 and 8.5 GHz
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Comp. 1.4 GHz VLA 5 GHz VLBI 8.5 GHz VLBI 8.5 GHz VLA 22.5 GHz VLA
mJy mJy mJy mJy mJy

J1536+0441A < 0.6 (A+B) 0.72±0.06 0.88±0.12 1.17±0.04 1.65±0.11
J1536+0441B < 0.6 (A+B) 0.24±0.03 0.27±0.02

Table 1: Radio flux densities of J1536+0441A and J1536+0441B. The 1.4GHz flux density is an upper
limit from the FIRST Survey [13] including both components.The 8.5 GHz VLBI flux is from VLBA
observations made in October 2009 [15]. The 8.5 GHz VLA flux isfrom [14]. The 22.5 GHz VLA flux is
from [15].

allows us to better constrain the spectral shape of J1536+0441A. The radio spectrum is clearly
inverted (with a spectral indexα ≃ 0.4 with S(ν) ∝ να ). The inverted spectrum is confirmed by
the non-contemporaneous VLA data, withα = 0.35±0.08 between 8.5 GHz and 22.5 GHz [15],
yielding to an inverted spectrum up to≃ 30 GHz rest-frame.

One possible origin of the inverted radio spectrum is synchrotron self-absorption. For self-
absorption to occur, the brightness temperature must be comparable to the kinetic temperature of
the synchrotron electrons. The measured brightness temperature for J1536+0441A, for which we
have a deconvolved fitted size, isTb = 9×106 K. This value is too low to affect the radio spectrum
unless the magnetic field is rather large [8]. An alternativeinterpretation of the inverted radio
spectrum of J1536+0441A is thermal free-free emission froma disk wind [8, 2]. As shown in the
model developed by Blundell & Kuncic [2], high brightness temperatures (Tb ∼ 107 K) can arise
from a thermal plasma provided that it is hot (Te

>
∼ 107 K) and marginally optically thin (τ f f

ν <
∼ 1).

In this scenario, we can expect a link between the radio and X-ray emission. A correlation between
radio luminosity at 5 GHz (LR) and bolometric 0.2-20 keV X-ray luminosity (LX), with LR/LX ∼

10−5 indeed has been found in nearby Seyferts and radio quiet quasars [12, 10]. For J1536+0441A
the radio luminosity at 5 GHz, as derived from our observations isLR = νL5GHz = 1.9×1040 erg
s−1. Using the X-ray luminosity measured bySwift [1], we obtainLR/LX = 1.4×10−5, assuming
all the X-ray emission is associated to J1536+0441A.

4. Summary

We have presented the 5GHz EVN observations of the candidatebinary black-hole system
J1536+0441. We have detected two compact cores associated with the sources J1536+0441A and
J1536+0441B separated by 0.97 arcsec (5.1 kpc). The main results can be summarized as follows.

1. A flat spectrum radio nucleus, unresolved on the pc-scale,and with a radio luminosity of
0.6×1040 erg s−1 is found at the position of J1536+0441B, suggesting that J1536+0441B is
most likely an obscured AGN rather than a passive ellipticalgalaxy.

2. At the position of J1536+0441A we detect a slightly resolved radio nucleus. From almost
contemporaneous 5 & 8.5 GHz observations we derive a spectral index of α ≃ 0.4 (with
Sν ∝ να ). From a comparison with VLA observations the rising spectrum continues up to
22.5 GHZ (≃ 30 GHz rest frame). Given the rather modest measured brightness temperature
(Tb = 9×106 K), we suggest that the inverted spectrum can be explained not as synchrotron
self-absorption but as thermal free-free emission from a disk wind.
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3. We derive a value ofLR/LX = 1.4×10−5 that is totally consistent with the correlation found
for radio-quiet quasars and Seyfert galaxies.
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