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It is currently accepted that intrinsically compact and bright radio sources characterized by a

convex spectrum peaking at frequencies ranging from 100 MHzto a few GHz are young objects.

Following the evolutionary models, these objects would evolve into the population of classical

radio galaxies. However, the fraction of young radio sources in flux density-limited samples is

much larger than expected from the number counts of large radio sources. This may suggest that

for some reason a significant fraction of young objects neverbecome large radio galaxies with

sizes up to a few Mpc. The discovery of the young radio source PKS 1518+047 characterized by

an uncommonly steep spectrum confirms that the radio emission may switch off shortly after its

onset. Then the source spectrum steepens and evolves due to energy losses. If the interruption

is not temporary, the fate of the fading sources is to disappear at frequencies lower than those

explored by current radio telescopes. Fossils of past activities has been recently found at pc-scale

distances from newly born radio sources, suggesting the presence of short-lived objects with an

intermittent radio emission.
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1. Introduction

Powerful (L1.4GHz > 1025 W/Hz) and intrinsically compact (< 1′′) extragalactic radio sources
represent a large fraction (15–30%) of the radio sources selected in flux-limited catalogues. Their
main characteristic is the steep synchrotron spectrum that turns over at frequencies between 100
MHz and a few GHz, and is interpreted as due to synchrotron-self absorption [16, 22], although
an additional contribution from free-free absorption (FFA) has been found in the most compact
sources [7, 13]. When observed with sub-arcsecond resolution these sources usually display a two-
sided morphology with a weak core, jets and mini-lobes/hotspots, and for this reason they were
termed compact symmetric objects (CSO) by [23]. Given their intrinsically compact size and their
morphology resembling a scaled-down version of the classical powerfulFRII [3] radio galaxies,
CSOs have been interpreted as representing an early stage in the radio source evolution. Decisive
support to this scenario came from the determination of both kinematic [20] andradiative [14] ages
of about 103–104 years, i.e. much smaller than the ages (107–108 years) estimated for classical
radio galaxies with linear sizes up to a few Mpc [11].
In this context, it is possible to draw an evolutionary path in which CSOs are theprecursors of
extended radio galaxies [19]. Several evolutionary models [4, 22] have been developed aiming at
describing how the physical properties, like luminosity and expansion velocity change as the radio
source grows. However, many aspects, like the excess of young radiosources in flux-limited cata-
logues are not reproduced by the current models and additional explanations must be found.

2. Fading objects

A decrease in the radio luminosity as the source grows is required by the highfraction of young
radio sources in the catalogues. The expected number of young objects may be determined roughly
from the ratio of their typical age and the average age of the extended sources if luminosity does
not change during the source growth. The fraction of young objects derived in this way is a few
orders of magnitude lower than what found from the source counts. However, in the evolutionary
models the luminosity is expected to decrease by about one order of magnitudeas the source grows
from a few kpc up to Mpc scale [4]. However, this is again not enough to reproduce the source
counts.
A possible explanation for this discrepancy has been suggested by the distribution of the CSOs ages
which peaks around 500 years [6], indicating that a significant fractionof young objects may be
short-lived, never becoming extended radio sources [10]. However, fading radio sources are very
difficult to find due to their very steep radio spectrum that makes them under-represented in source
catalogues. Indeed, only a few objects have been suggested as faders so far, based on the absence
of active regions [8, 9], and the distribution of spectral index found steep across the whole source,
like in the case of PKS 1518+047 [17].

3. The case of PKS 1518+047

The radio source PKS 1518+047 is a rare gem among young radio sources. It is a powerful
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Figure 1: VLBA images at 312 MHz (left), 1.6 GHz (center), and 8.4 GHz (right) of the fading radio source
PKS 1518+047. The first contour (f.c.) level corresponds to 3times the 1σ noise level measured on the
image. Contour levels increase by a factor 2. Adapted from [17].

(L1.4GHz = 1028.5 W/Hz) radio source 1.1 kpc in size (Fig. 1), and hosted by a quasar atz = 1.296.
Its radio spectrum peaks at 1 GHz and in the optically-thin regime is uncommonly steep (α8.4

4.8 =
1.2,S ∝ ν−α ).
To understand the physical properties of this source we carried out VLBA observations at 312, 611
and 1400/1600 MHz, and we made use of archival VLBA data at 4.8 and 8.4 GHz to constrain both
the optically-thick and -thin part of the spectrum (a detailed discussion on observations and data
reduction can be found in [17]).
The pc-scale resolution provided by the 312-MHz VLBA data allowed us to resolve the source
structure into two main components roughly in the north-south direction. Both components are
then further resolved in several sub-components with VLBA observationsat higher frequencies
(Fig. 1). The peculiarity of this source is that both the northern and southern complexes are charac-
terized by steep spectral indicesα = 1.0−1.5, indicating that no active regions, like conventional
jet knots and hotspots, are present. Strong support to the fading scenario arises from the analysis of
the synchrotron spectrum where injection models fail in reproducing the spectral shape. Only mod-
els in which no particle supply is taking place provide a good fit to the spectrum(Fig. 2). From the
break frequency, and assuming the equipartition magnetic field, we compute theradiative source
age that results to be 2700±600 years. On the other hand, from the best fit to spectrum we find that
the time spent by the source in the “fader” phase should represent 20% (tOFF = 550±100 years)
of the whole source lifetime, indicating that the radio emission switched off shortly after its onset,
and only electrons withγ < 600 are still radiating [17]. If the interruption of the radio activity is
a temporary phase and the radio emission from the central engine will restart soon, it is possible
that the source will appear again as a young radio source, perhaps withthe relics of this previous
activity visible at low frequencies. If this does not happen, the fate of thisradio source is to emit
at lower and lower frequencies, until it disappears below the frequencies explored by current radio
telescopes.
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PKS 1518+047        Total spectrum PKS 1518+047        Northern lobe

b

PKS 1518+047      Southern lobe

Figure 2: The best fit to the overall spectrum of PKS 1518+047 (left), and to the spectra of the northern
(center) and southern (right) components, obtained using a synchrotron model in which the time spent in the
“fader mode” is about 20% of the total source age. Adapted from [17].

4. Recurrent activity?

The discovery of fading objects among the population of young radio sources may provide a
interesting explanation for the excess of the source counts. The presence of a population of short-
lived objects related to an intermittent activity of the central engine has been recently postulated by
[2] as due to radiation pressure instability in the accretion disk.
The idea that the radio emission may be a recurrent phenomenon was suggested by [1] after discov-
ering in the radio galaxy J0111+3906 an off-axis diffuse steep-spectrum emission at about 60 kpc
away from the newly born (tage∼ 370 years, [18]), compact (22 pc in size) structure. In this source
the low-surface brightness feature is likely the reminiscence of a past activity that must have lasted
about 107−8 years in order to reach a distance of 60 kpc from the source core. Recently, fossils of
previous activity at parsec-scale distance from the reborn source have been found in the two very
young (≤103 years) radio galaxies OQ 208 [12], and J1511+0518 [16]. Extendedfeatures located
at pc-scale distances from the central object may be the relic of a far morerecent previous activity
that occurred about 103-104 years ago, suggesting that at the beginning of the radio activity several
subsequent short bursts may take place before the development of large radio sources [16].

5. A sample of short-lived candidates

So far there are not statistically complete samples of short-lived objects given their difficulty to
be picked up in conventional flux-limited radio catalogues. Furthermore, to unambiguously iden-
tify a radio source as a short-lived object it is necessary to know the spectral index distribution
across the whole source in order to be sure that no active regions are still present.
With the aim of determining the incidence of short-lived objects we selected a sub-sample of can-
didate fading objects from the B3-VLA CSS complete sample [5] which comprises objects with
linear size (and thus ages) from 100 pc (103 years) and 10 kpc (105 years). As short-lived candi-
dates we selected those sources with an optically-thin spectrum steeper thanα > 1, and without
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Figure 3: The radio source B1133+432 has an example of a short-lived candidate. The preliminary spectral
analysis does not point out the presence of active galaxies,like hotspots, since the spectral index is found
steep across the entire source. Adapted from [15].

evidence of active regions from previous multi-frequency works [15,21]. We ended up with 18
sources: 9 with a linear size (LS) larger than 1 kpc, and 9 with LS< 1 kpc.
In order to reliably constrain the spectral index distribution across the source structure, and thus
to be sure about the absence of any active regions, we are analysing archival multifrequency VLA
data, for the sources with LS>1 kpc, and VLBA data for those with LS< 1 kpc. For 5 sources
among the most compact ones lacking high frequency data, we obtained new8.4 GHz VLBA ob-
servations to complement the frequency coverage. A preliminary analysis of the compact radio
source B1133+432 has not pointed out any region with flattish spectral index (Fig. 3), suggesting
that we are dealing with a genuine fading short-lived object. When the spectral information is ob-
tained for all the sources we will have a complete sample made of genuine fading, steep-spectrum
objects. Their fraction will then be compared with the radio sources in the B3-VLA CSS sample
in orider to have a clearer picture on the incidence of genuine short-livedobjects.
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