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We have studied the physical properties of a sample of narrow-line Seyfert 1 (NLS1) galaxies,

and present a summary of our previous results, and new results. In particular, we have previously

shown that (1) the locus of NLS1 galaxies on the MBH-σ[OIII ] plane does follow the relation

of non-active galaxies after removing objects obviously dominated by outflows as evidenced by

their [OIII] core blueshifts. We have (2) identified a number of so-called ’blue outliers’ with

large outflow velocities revealed by their emission-line kinematic shifts. We also (3) present new

correlations and trends which link black hole mass, Eddington ratio and physical parameters of

the emission-line regions.
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1. Introduction

Narrow-line Seyfert 1 (NLS1) galaxies are an exceptional subclass of active galactic nuclei
(AGNs). As AGNs with the smallest Balmer lines of the broad-line region (BLR)and the strongest
FeII emission, they are placed at one extreme end of the eigenvector 1 (EV1) parameter space
(e.g., [2]). Observations and interpretations indicate that NLS1 galaxies harbor low-mass black
holes accreting at a high rate. As such, they may hold important clues on the nature of black
hole growth and evolution, and of feeding and feedback (see [12] fora review on NLS1 galaxies).
Studying the multi-wavelength continuum and emission-line properties of NLS1 galaxies, the links
and correlations between them, and the physics that drive them, is therefore of great interest.

We have therefore created and analyzed an independent, large, homogeneous sample of NLS1
galaxies plus a comparison sample of broad-line Seyfert 1 (BLS1) galaxies, in order to address
the following key topics: (1) the locus of NLS1 galaxies on the M-σ plane; (2) the properties of
NLS1 galaxies with extreme outflows; (3) the differences in the narrow-lineregion (NLR) density
between NLS1 and BLS1 galaxies; and (4) the correlations and trends which link the physical
properties of our AGN sample, and the physical drivers underlying them.Results (1)-(3) have been
published before, and we summarize here the salient results, and add somenew thoughts.

Throughout this paper, a cosmology withH0 = 70 km s−1 Mpc−1, ΩM = 0.3 andΩΛ = 0.7 is
adopted.

2. The sample

The NLS1 galaxies which make our sample were selected from the catalog of Véron-Cetty &
Véron [17], to which we added a comparison sample of BLS1 galaxies from[3] at z< 0.3. The
sample was first presented by [20]. All galaxies have been observed inthe course of theSloan
Digital Sky Survey(SDSS) (Data Release 3; [1]) and have detectable low-ionization emission lines
(in particular, [SII]λλ6716,6731, is always present with S/N> 5). The initial sample selection,
data preparation, and data analysis methods were described in detail in [20]. Emission lines were
fit with Gaussian profiles. The Balmer lines were decomposed into a narrow and a broad com-
ponent, representing emission from the NLR and BLR, respectively. Thebroad component itself
was fit by combining two Gaussian profiles. We adopted the classical FWHM cut-off of the broad
component of Hβ of FWHM(Hβb) < 2000 km s−1 as classification criterion of NLS1 galaxies.
Re-classifying the galaxies of our sample accordingly, based on spectral emission-line fitting and
FWHM determination, we have 55 NLS1 and 39 BLS1 galaxies in our sample. Emission-line and
continuum measurements were then used to derive AGN parameters, includingblack hole masses
and Eddington ratios.

Black hole masses: we have estimated the black hole masses of our NLS1 and BLS1 galaxies
using the width of Hβb and applying theRBLR–λL5100 relation ([10]). The NLS1 galaxies have,
on average, smaller black hole masses than the BLS1 galaxies (Figure 1a),as commonly found
when applying these relations. The estimated black hole masses of NLS1 galaxies range from
log(MBH/M⊙)NLS1 = 5.7 to 7.3 with an average value of 6.5, while BLS1 galaxies show a range
from log(MBH/M⊙)BLS1 = 6.5 to 8.4 with an average value of 7.2.
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Figure 1: Histograms of black hole masses and Eddington ratios (solidline, NLS1 galaxies; dashed line,
BLS1 galaxies).

Eddington ratios: Eddington ratios were then derived from the black hole masses, according
to LEdd = 1.31038 MBH/M⊙ergs−1. The bolometric luminosityLbol was obtained after applying a
correction ofLbol = 9λL5100. NLS1 galaxies show, on average, higher Eddington ratios than BLS1
galaxies (Figure 1b). Eddington ratios of our NLS1 galaxies range fromlog(L/LEdd)NLS1 = −0.6
to 0.3 with an average value of−0.1, while those of BLS1 galaxies range from log(L/LEdd)BLS1 =

−1.4 to−0.3 with an average value of−0.8.

3. The MBH-σ relation

Studying the locus of NLS1 galaxies on the MBH-σ plane provides us with important clues
on the question, how galaxies with rapidly growing black holes evolve ([14]). Previous stud-
ies of NLS1 galaxies, employing different samples and methods, led to partiallyconflicting re-
sults regarding the galaxies’ location on the MBH-σ plane. When using the width of the narrow
[OIII] λ5007 emission line, FWHM[OIII ], as replacement for stellar velocity dispersionσ∗, some
authors found that, on average, NLS1 galaxies areoff the classical MBH-σ[OIII ] relation (e.g., [7]),
while in other studies they turned out to beon that relation (e.g., [18]).

We have carefully re-investigated ([11]) the use of the width of [OIII] as a suitable surrogate
for σ∗ for the galaxies of our sample. [OIII]λ5007 is commonly used for an estimate ofσ∗, but
it is also well-known that this line shows complex and asymmetric profiles (see, e.g., [7]), and
other phenomena (see below), occasionally. Special attention was therefore paid to modeling the
[OIII] profiles. The total [OIII] profile, [OIII]total was decomposed into two Gaussian components:
a narrow core and a broad base. The narrow core of [OIII] is referred to as [OIII]c. We distinguish
between two types of [OIII] spectral complexity: (1) the presence of a broad base, which tends to
be blue-asymmetric and is referred to as "blue wing"; and (2) systematic blueshifts of thewhole
coreof [OIII].
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Figure 2: Location of NLS1 galaxies (filled circles) and BLS1 galaxies(open circles) on the MBH-σ plane.
Blue outliers in [OIII] are marked with extra open squares.Left: σ measurements are based on the narrow
core of [OIII] λ5007. Right: σ measurements are based on [SII]. The dashed and solid lines represent the
MBH-σ∗ relation of non-active galaxies of [16] and of [5].

We routinely corrected for blue wings (i.e., we removed them), and only the narrow core
of [OIII] was used to measureσ . Remarkably, a fraction of all NLS1 galaxies show a signifi-
cant blueshift of their whole (symmetric) [OIII]core profile, with a velocity shiftv[OIII ]c > 150
km s−1(hereafter referred to as "blue outliers" [23]; marked in Figure 2). This blueshift comes with
a dramatic extrabroadeningof the [OIII] core profile, and it is actually exactly these NLS1 galaxies
which show a significant offset from the classical MBH-σ[OIII ] relation.

Since the velocity fields of these blue outliers are not dominated by the bulge potential, their
line widths cannot be used as surrogates forσ∗. In our sample, all remaining NLS1 galaxies areon
the MBH-σ[OIII ] relation, after excluding the objects with strong [OIII] core blueshifts (Figure 2).
The full results of this study have been presented by [11].

In the future, it will be useful to check, whether other NLS1 samples also contain [OIII] blue
outliers, which have their whole line cores blueshifted (we would like to re-emphasize here, that
our key finding is about the core blueshifts, not about the blue wings).

Furthermore, we have also explored the usefulness of [SII]λλ6716,6731 as a surrogate for
σ∗. We found that NLS1 galaxies do follow the same MBH-σ relation as BLS1 galaxies if the width
of [SII] is used as a substitute forσ∗. We have checked that [SII] isnot systematically influenced
by the outflow component that appears in [OIII]c. NLS1 galaxies with blue outliers in [OIII]c are
still distributed along the classicalMBH −σ relation when using [SII] (Figure 2).

Zhou et al. [22] presented estimates of stellar velocity dispersion from SDSS spectra, and
they concluded that NLS1 galaxies were highly offset from the classicalthe MBH-σ∗ relation (but
see [4] who found that NLS1 galaxies were on the relation based on the measurements of stellar
absorption lines).

Can these different results be reconciled with each other in one consistent model? That is
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Figure 3: Left: velocity shift of individual emission lines vs. the ionization potential IP of [OIII] blue
outliers.Right: correlation of the [OIII] core width with the [OIII] core blueshift.

to say, can we account for the fact that some estimates ofσ∗ place NLS1 galaxies to the right of
the classical relation in MBH-σ diagrams, while our emission-line measurements put them on the
relation? There is strong evidence, that a significant fraction of barredgalaxies does not actually
follow the classical MBH-σ∗ relation, but is rather offset (e.g., [9]) . The same may therefore hold
for barred NLS1 galaxies. Since the stars follow the bar, the possibility hasbeen discussed, that
streaming motions along the bar, or other effects, influence the measurementsof σ∗. On the other
hand, the NLR may not follow the bar, but may rather be confined to the central core, and is always
unresolved in our sources; i.e., we always include the whole NLR in our measurements. Therefore,
velocity dispersion measurements of stars and gas in barred galaxies may lead to different results.

4. Blue outliers

Among our sample, we identified in total nine NLS1 galaxies as "blue outliers", as described
above. In a follow-up study, we have systematically explored the optical properties ([13]) of these
blue outliers. Our main results can be summarized as follows: (1) All of them show high Eddington
ratios and narrow Balmer lines of the BLR. (2) We detected a strong correlation of line blueshift
with ionization potential in each galaxy, and confirmed a strong correlation between [OIII] blueshift
and line width (Figure 3). (3) We also reported the absence of a zero-blueshift [OIII] component
from a classical inner NLR, while the presence of a classical quiescentouter NLR is indicated by
the existence of low-ionization lines.

The high Eddington ratios possibly lead to strong radiation-pressure driven winds/outflows.
Blue outliers with their extreme velocity shifts place tight constraints on models of the NLR and
mechanisms of AGN outflows on large scales. We tentatively favor a scenario where the NLR
clouds of blue outliers are entrained in a decelerating wind (see [13] for more details).
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Figure 4: Histograms of the NLR density (solid line, NLS1 galaxies; dashed line, BLS1 galaxies).

5. The NLR density

When attempting to explain the multi-wavelength properties of NLS1 galaxies, andcorrela-
tions among them, winds and density effects have been suggested as potentially important sec-
ondary parameters, driving some of the observed trends. We have therefore made use of the di-
agnostic power of the [SII]λλ6716,6731 intensity ratio to measure the density of the NLR, and
have investigated whether or not there is any difference in the NLR densitybetween NLS1 galaxies
and BLS1 galaxies. We found that the average NLR density of NLS1 galaxies is lower than that
of BLS1 galaxies. There is a ’zone of avoidance’ ([20]) in density in the sense that BLS1 galaxies
avoid low densities, while NLS1 galaxies show a larger scatter in densities including a significant
number of objects with low densities (Figure 4).

We found several lines of evidence that outflows play a significant role indriving the differ-
ence in the NLR between NLS1 and BLS1 galaxies. If the radiation-pressure driven winds/outflows
still propagate up into the NLR, then we may expect that the NLR gas in such objects is actually
more tenuous. An anti-correlation of decreasing electron density with increasing Eddington ra-
tio can be seen across our entire sample of NLS1 and BLS1 galaxies. We found that the peak
blueshift of [OIII] does significantly correlate withL/LEdd. This correlation then indicates that
outflows are more common in objects with high accretion rates. We tentatively favor the effects of
winds/outflows, stronger in NLS1 galaxies than in BLS1 galaxies, as explanation for the zone of
avoidance in density (see [20] for full results).

6. Correlation analysis

In order to study trends across our sample, and to make a comparison with previously known
correlations derived for different NLS1 samples, and to identify new trends, we have performed
two types of correlation analyses. Independent samples are of importancewhen assessing the
robustness of correlation analysis, as is the need to increase correlationspace. Ours is a large,
homogeneously analyzed sample, and we add new emission-line measurements(particularly, the
the density-sensitive [SII] ratio) to correlation analysis.
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Figure 5: Strong correlations among black hole mass, Eddington ratioand emission-line properties. Sym-
bols are as in Figure 2. The objects that are off the plots are indicated by arrows.

In a first step we performed a Spearman rank order correlation analysisbetween the key pa-
rameters measured for our sample. These correlations involve emission-linewidths (FWHMHβb

,
FWHM[SII] and FWHM[OIII ]c), emission-line ratios (the strength of the [OIII] line, abbreviated as
R5007, the strength FeII complex R4570 and the sulphur emission-line ratio R[SII] defined as the in-
tensity ratio of [SII]λ6716/λ6731, and the inferred NLR densityne), and the parametersλL5100,
L/LEdd, andMBH. Figure 5 displays the correlation diagrams for several parameters. Thefull
Spearman rank order correlation analysis will be presented in [21].

We then performed a Principle Component Analysis (PCA; [2, 6]), in order to identify the main
drivers of the correlation properties. We involved the NLR density (represented by the Sulphur
ratio R[SII]) in the PCA for the first time. We found EV1 is significantly (anti-)correlated with
R4570, FWHMHβb

, R[SII], FWHM[SII] andv
[OIII ]c

. When EV1 decreases, R4570 increases, outflow
velocity becomes stronger and R[SII] increases, while R5007, FWHMHβb

and FWHM[SII] decrease.
A correlation analysis further shows that EV1 strongly correlates withL/LEdd and the NLR density
ne (Figure 6). We confirm that EV1 is an indicator ofL/LEdd (e.g.,[2, 15, 19, 8]. We further identify
the NLR density as a new EV1 element for AGNs.
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Figure 6: Correlations of EV1 withL/LEdd andne. Symbols are as in Figure 2. The EV1 is plotted in
arbitrary units.

7. Conclusions

We have systematically studied a large sample of NLS1 galaxies plus a comparison sample of
BLS1 galaxies, and obtained the following results:

• NLS1 galaxies in our sample do follow the MBH-σ relation of BLS1 galaxies and non-active
galaxies, if [SII], and [OIII]c are used to measureσ ; with one exception: galaxies with
systematic blueshifts of thewhole core profile oftheir [OIII] line also have anomalously
broad [OIII] profiles. The velocity fields of these "blue outliers" are dominated by outflows
and are therefore not suitable forσ∗ measurements. All samples making use of [OIII] should
therefore have blue outliers removed, before measuring velocity dispersion from [OIII].

• The [OIII] blue outliers are of independent interest because of their strong large-scale out-
flows, which also appear in other high-ionization emission lines.

• NLS1 galaxies show lower average NLR density than BLS1 galaxies. We identify the NLR
density as a new element of EV1 in AGNs.
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