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We report on a study of long-term flux variations in a sample ofmore than 1000 AGN observed

with ROSAT and in the XMM-Newton slew survey. Over a period of3-19 years, NLS1 galaxies

as a class are found to be only slightly more variable than broad line Seyfert galaxies, despite the

strong short term variability seen in some bright nearby NLS1s. Contrary to expectations, it is

Seyfert II galaxies that exhibit the greatest flux volatility. One particular Sy II, which has bright-

ened by a factor> 300 over 15 years, has been monitored in detail with Swift andXMM. The

spectrum is extremely soft (kT∼ 60eV) consistent with pure thermal emission from an accretion

disk and reminiscent of ROSAT observations of the NLS1, WPVS007. We show that this is likely

to be a "true" Sy II, without a BLR, and speculate that in its new high luminosity state we may be

able to witness a BLR in formation.
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1. Introduction

The variability of the radiation output of AGN is well established and is one of their defining
characteristics. In single observations of Seyfert I galaxies, fluctuations in the X-ray output on
timescales of minutes to hours is the norm (e.g. NGC 4051 [1] and MRK 766 [2]). The power
spectral density function (PSD) of these variations can be described by red noise; a smooth spec-
trum with increasing amplitude at lower frequencies ([3]) .The PSD of AGN has been shown to
have a break, where the slope flattens, occurring on a timescale that scales with the luminosity
and by implication the black hole mass. Lower mass (luminosity) AGN have a break in the PSD
of ∼ 10−2 days (e.g. NGC 4051 [4]) whereas the most massive AGN have breaks at∼ 100 days
(e.g. NGC 3516 [5]). This means that on short timescales, lowmass AGN exhibit stronger X-
ray variability than their more massive counterparts whereas on timescales of years the variability
should be consistent. An additional dependence on the fraction of the Eddington accretion rate, ˙m
has been observed, leading to the refinement that the variability can be explained by characteristic
pertubations in a steady-state accretion disk, whose innerradius scales withMBH/ṁ [6].

The class of objects known as NLS1, show stronger variability than Sy I and exhibit more
rapid variations. This is consistent with the belief that they are low mass systems accreting at a
high fraction of the Eddington rate.

Very large changes in flux due to variations in line-of-sightabsorbing material have been ob-
served in several sources. In the Seyfert 1.8 galaxy, NGC1365, factor 10 variations, accompanied
by strong spectral changes have been seen several times ([7], [8]) and can be modelled by move-
ments of individual clouds in the broad-line region.

Finally, Bl Lacs or Blazars have been famous for their volatility at all wavelengths for a long
time (e.g. [9]).

While there has been a lot of work on short-timescale variations in specific sources and longer
baseline studies of bright sources with RXTE, to date there have been few systematic studies of
the variability of large samples of objects. This is mainly due to the lack of large-area sensitive
sky surveys. The ROSAT All Sky Survey (RASS [10]) is an excellent resource for AGN with
F0.2−2 > 3×10−13 erg s−1 cm−2 but it can only be systematically compared with data taken from
ROSAT pointed observations taken months or a few years afterthe RASS completed in 1990. With
the advent of the XMM-Newton slew survey (XMMSL1 [11]) containing observations from 40% of
the sky withF0.2−2 > 6×10−13 erg s−1 cm−2, a sensible comparison of AGN flux over a baseline
of 3-19 years can now be achieved over 40% of the sky. In this paper we make a systematic
comparison of the long-term variability of all classes of AGN detected either in the ROSAT or
XMMSL1 surveys. AλCDM cosmology with (ωM ,ωλ ) = (0.3,0.7) andH0=70 km−1sec−1 Mpc−1

has been assumed throughout.

2. Method of ROSAT/XMM comparison

We have made a sample of AGN which have been observed (but not necessarily detected) in
both the RASS, or ROSAT pointed observations, and XMMSL1. Wedefine three groups of objects:

• XMMSL1 sources, identified as AGN or galaxies, which have counterparts in ROSAT.
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• XMMSL1 sources, identified as AGN or galaxies, which have been observed but not detected
by ROSAT.

• RASS sources, identified as AGN or galaxies, which have been observed but not detected in
XMMSL1.

We have used sources from the XMMSL1-delta3 CLEAN catalogue, released in August 2009,
containing slew data taken between August 2001 and January 2009.

Sources which are detected with extended X-ray emission in either XMM-Newton or ROSAT
have been excluded.

2.1 Upper limits

For the XMMSL1 AGN without a ROSAT counterpart a 2-sigma upper limit to the ROSAT
count rate has been found using theEXSAS software package ([12]).

For RASS AGN, observed but not detected in XMMSL1, we have calculated a 2-sigma upper
limit to the XMM-Newton count rate using a web-based upper limit server1 ([13]).

The final sample contains 1038 AGN of which 689 were detected in both surveys, 223 have a
RASS upper limit and 126 have an XMMSL1 upper limit.

2.2 Count rate to flux conversion

All XMM-Newton slew observations have been made with the EPIC-pn detector using the
Medium filter. In Figure 1 we plot the XMMSL1, 0.2–2 keV count rate against the RASS count
rates. We find the mean ratio of the XMM to RASS count rates is 6.94+/-0.20. From now on we use
a factor 7 to normalise the count rate ratio, such that an intrinsic ratio of 7 is considered to show the
same 0.2-2 keV flux in the two missions. The conversion factorfrom count rate to flux is crucial
for comparing fluxes from different instruments and we need to be very careful when considering
the effect of the source spectrum on this conversion. In Figure 2 we show the count rate ratio
(normalised by the factor 7;R7) as a function of the source spectrum. In principle there is alarge
variation ofR7 if the absorbing column is very low or very high. With these AGN observations,
NH is practically limited to a minimum of∼ 1×1020 cm−2, due to our Galaxy, and a maximum
of ∼ 1022 cm−2 due to the flux limitations of the two surveys2. This can be seen clearly in the
sky distribution of the objects in the sample where few objects lie in the Galactic plane (Fig. 3).
Similarly we can infer that the intrinsic absorption can notmuch exceed∼ 1022cm−2. In this range,
and for spectral slopes of 1.0 to 3.0, we see that a source withequal flux in RASS and XMMSL1
observations will have 0.3 < R7 <1.5.

We now define the variability ratio,RV , to be the ratio between the higher and lower count rate
irrespective of the observatory3

1http://xmm.esac.esa.int/external/xmm_products/slew_survey/upper_limit/uls.shtml
2This applies to cold absorption. The behaviour of ionized absorbers which permit the passage of low-energy X-rays

is quite different
3HenceRV = 1 whenR7 = 1 andRV = 2 whenR7 = 2 orR7 = 0.5.
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Figure 1: A comparison of the ROSAT and XMM-Newton (0.2–2 keV) slew count rates
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Figure 2: The influence of source spectra (an absorbed power-law) on the XMMSL1 / ROSAT count rate
ratio

Figure 3: The sky distribution of the AGN in the sample in Galactic coordinates
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Figure 4: The X-ray variability of our sample as a function of XMMSL1 0.2–2 keV luminosity; left panel:
individual sources, right panel: median variability per luminosity bin.

3. Results of ROSAT/XMM comparison

From the full population of 1038 AGN we find a median count rateratio (R̂V) of 2.11, with
68.4% of the sources havingRV ≤ 3 and 4.9% withRV ≥ 10.

We have made simulations of a non-varying population of sources with the GalacticNH ran-
domly selected from the actual sky values of the 1038 AGN, power-law indices selected from the
population of ROSAT AGN slopes reported in [14] (Γ = 2.05±0.55) and count rates randomised
using the actual errors in the XMMSL1 and RASS measurements.The simulated sources have a
variability ratio with a median valuêSV=1.295±0.003.

Following, [16] and [17] we calculate the true variability signal (V) by:

V2 = (RV −1)2
− (SV −1)2 (3.1)

whereSV is effectively the noise due to the spectral effects and measurement errors. This
gives a median variability,V, of 107±7% in the 0.2–2 keV energy band. In the UV band the mean
long-term variability was found to be 35% from a survey of 9000 SDSS quasars ([18]). This result
then continues the trend of higher photon frequencies exhibiting larger amplitude variability, seen
on shorter timescales (e.g. NGC 5548; [19]).

3.1 Luminosity dependence

In Fig. 4 we plotRV against the X-ray luminosity for the sources where the redshift is known.
No significant correlation is found. As we are probing variability timescales far longer than the
PSD break timescale it is normal that the luminosity-dependence, seen at shorter timescale, has
no influence. This result shows that no further luminosity (mass) dependent effect is affecting the
longer-term variability.

3.2 Source category

We have cross-correlated our sample with the Veron catalog of Quasars & AGN [22] to find
the AGN class for each source, where known. In Table 1 we separate the sources by AGN class and
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Table 1: Variability statistics for each AGN class

CLASSa No.b Medianc Fraction (%)d

Var. (%) RV < 2 RV < 3 RV > 10

ALL 1038 107±7 46.8 68.4 4.9±0.8
S1 318 90±12 51.8 72.0 4.1±1.4
S1.2 48 66±27 62.5 78.9 0.0
S1.5 83 112±26 45.1 65.7 3.3±2.4
S1.8/1.9/2 37 155±44 34.3 55.9 13.3±6.0
QSO 232 130±18 42.4 62.1 4.8±2.0
NLS1 64 99±28 48.1 72.5 4.1±2.9
Blazar 142 109±19 43.9 73.4 3.4±1.7

a AGN class: Seyfert 1, 1.2, 1.5, a combination of 1.8, 1.9 and 2, QSO, NLS1 and a combination
of Blazars, blazar candidates and highly polarised quasars.
b The total number of sources in this category.
c Median variability,V̂, expressed as a percentage, after correcting for spectral effects (see text).
d The percentage of sources withRV less than 2, less than 3 or greater than 10.

calculate the median variability and the fraction of sources showingRV < 2, < 3 and> 10. The
calculations ignore sources with upper limits that fall outside of these limits.

Seyfert II galaxies have the highest percentage of sources showing strong (RV > 10) variability.
It is not clear whether this is due to changes in line-of-sight absorption or changes in the intrinsic
emission and these data can not help distinguish between thetwo possibilities. A closer look at one
particular example is needed.

4. GSN 069

During a slew on July 14, 2010 XMM-Newton detected soft X-rayemission at 1.5±0.3 counts
s−1 from a position consistent with the nucleus of GSN 069 (also known as 6dFg0119087-341131;
z=0.01816) (see Fig. 5). Previous ROSAT survey and pointed observations failed to detect the
source and give upper limits, to the unabsorbed flux, 30–360 times fainter than the XMM-Newton
slew detection (Table 2).

Two, consistent, optical spectra, taken in 2001 and 2003 in the 2dF and 6dF surveys [20] show
unresolved Balmer lines (FWHM≤ 200 km s−1) and line ratios consistent with a Sy 2 classification
(Fig. 6).

The source has been monitored with the SWIFT-XRT since its discovery. The SWIFT obser-
vations have been analysed following the procedure outlined in Evans et al. (2009) [21] and show
stable soft X-ray emission to within a factor 2 (Fig. 7).
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Figure 5: A DSS image and contours of GSN 069: the red circle representsthe XMM-Newton slew error
circle, blue is for the SWIFT-XRT position and green is the SWIFT position enhanced using UVOT

Figure 6: Optical spectrum of GSN 069 from the 6dF survey
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Figure 7: The X-ray light curve of GSN 069
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Table 2: GSN 069 observation log

Missiona Date Count rateb Fluxc

RASS 1990 < 0.0099 < 0.11
ROSAT-PSPC 1993-07-13T04:38:55< 0.00177 < 0.019
ROSAT-PSPC 1994-06-29T05:59:51< 0.00129 < 0.014
XMM slew 2010-07-14T00:48:14 1.49±0.35 5.1±1.6
SWIFT 2010-08-27T06:05:40 0.041±0.005 4.3±0.6
SWIFT 2010-10-27T05:32:30 0.037±0.004 3.9±0.6
SWIFT 2010-11-24T01:19:48 0.033±0.004 3.5±0.5
XMM pointed 2010-12-02T10:44:18 1.03±0.01 4.32±0.04
SWIFT 2010-12-22T15:05:03 0.029±0.004 3.0±0.5
SWIFT 2011-01-19T06:15:29 0.028±0.004 2.9±0.4
SWIFT 2011-02-16T05:33:31 0.029±0.003 3.0±0.4
SWIFT 2011-04-25T05:00:28 0.027±0.003 2.8±0.4
SWIFT 2011-05-23T04:06:01 0.035±0.004 3.7±0.5

a XMM-Newton, EPIC-pn camera: slew observation performed inFullFrame mode with the
Medium filter; pointed observation performed in FullFrame mode with the Thin filter. SWIFT-XRT
in pc mode.
b counts s−1 in the band 0.2–2 keV.
c Unabsorbed flux,F0.2−2 keV, units of 10−12 erg s−1 cm−2, calculated from a black body model
with kT=58 eV and Galactic absorption (2.48×1020cm−2)
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Figure 8: Residuals to adiskbbmodel fit to the XMM-Newton EPIC-pn (black), MOS-1 (red) and MOS-2
(green) data
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4.1 X-ray spectral fits

An XMM-Newton TOO, with nominal exposure 10ks, was performed in December 2010,
using all of the X-ray detectors and the optical monitor. Thedata were reduced using XMM-
SAS v11.0 ([15]). EPIC source spectra were extracted from a circle of 30 arcsecond radius and
background taken from a nearby source-free region. The two RGS cameras were combined into
one spectrum. All the camera spectra were grouped so as to contain a minimum of 25 counts
per bin and to oversample the instrument resolution by a maximum of 3. Fits to the individual
instruments gave consistent results and so all spectra werefit simultaneously, with a constant used
to compensate for the small normalisation differences.

An initial fit with a power-law, absorbed by the Galactic column (2.48× 1020; LAB Map -
[23]) gave a poor fit but showed that the overall spectrum is very soft (Γ = 6.2). To model the shape
better we fit the soft X-rays with a black-body or multi-colour disk model (diskbb in XSPEC) and
the weak emission at> 2 keV with a power-law (withΓ fixed to 1.7). The black-body and diskbb
models yielded better fits withχ2

r = 1.4,2.0 respectively (Tab. 3). To fit the remaining residuals we
tried various absorption models. Cold absorption, in the rest frame of the source, is excluded with
an upper limit of 9×1019cm−2. Good fits were obtained with a simple edge of energy 650 eV or
with an ionized absorber withNH=4-11×1023cm−2, ξ = 100−800 and a covering fraction of 74–
100% redshifted by either 0.15 or 0.2 in the rest frame of the source, depending on the continuum
model (Fig. 8).

The unabsorbed soft X-ray luminosity isL0.2−2 = 5.3± 0.1× 1042 erg s−1 for the best fit
model (diskbb with edge). This model greatly underpredictsthe flux observed in the OM UVW1,
UVM2 and B filters. However, the optical images of the galaxy appear extended in all filters and
so the count rates are clearly dominated by emission from thestellar population. We therefore
extrapolate the soft X-ray spectral model over optical, UV and EUV frequencies to obtainLbol =

1.8±0.1×1043 erg s−1. The emission above 2 keV is very weak, 1.1±0.9×10−3 counts s−1 in
the EPIC-pn detector, and the conversion of this count rate to an unabsorbed flux is highly model
dependent. We find a highest, 90% confidence, upper limit ofL2−10 < 8.5×1040 erg s−1, for the
black-body with partial covering model.

A spectral fit of the combined SWIFT-XRT data gives very similar spectral parameters to the
XMM-Newton spectrum showing that the soft spectral shape ofGSN 069 is long lasting.

A possible explanation for the steep X-ray spectra of GSN 069is provided by an ionized
absorber which allows very soft X-rays to pass while strongly blocking higher energies. This model
was used to explain the very steep spectra of WPVS 007 seen during the ROSAT era [24]. To test
for this we have attempted to fit the GSN 069 XMM-Newton spectrum with intrinsic power-law
emission absorbed by up to three ionized, partial covering,absorbers. No good fit was obtained
with a power-law model withΓ < 4 and therefore we conclude that the very steep soft X-ray
spectrum is thermal in origin.

4.2 Discussion

The lack of a cold absorber in the X-ray spectrum of GSN 069 is difficult to reconcile with
the classical interpretation of a Sy II where the broad linesare removed by absorption. From the
6dF optical spectrum we find a ratio of [OIII]5007 / Hβ ∼ 11 which is symptomatic of a missing
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Table 3: GSN 069 spectral fits to an XMM-Newton TOO

Low-energy model Intrinsic absorption χ2/dof

Plaw Bbody Diskbb Edgea zxipcfb

Γ kT (ev) kT (eV) Norm E (eV) Tau NH ξ cf(%) z

6.2 - - - - - - - - - 2015/107
- 56.3+0.7

−0.3 - - - - - - - - 152/107
- 58.2+0.7

−0.5 - - 651+22
−13 0.80+0.27

−0.19 - - - - 116/105
- 62.2+0.7

−0.6 - - - - 98+10
−18 2.7+0.1

−0.7 82+4
−8 0.167+0.005

−0.008 114/103
- - 67.1 43695 - - - - - - 215/107
- - 71.7+0.9

−0.9 28184+370
−470 650+16

−11 1.44+0.29
−0.24 - - - - 112/105

- - 77.4+1.1
−2.0 21105+340

−460 - - 54+9
−10 2.8+0.1

−0.6 92+8
−8 0.225+0.007

−0.007 116/103

All fits included absorption by the Galactic column (NH = 2.48×1020cm−2) and a power-law with
slope fixed atΓ = 1.7 to model the very weak emission beyond 2 keV. Errors are 90% confidence.
a Theedgemodel inXSPEC. b A partially ionized, partial covering model (zxipcfin XSPEC) with
parameters,NH in units of 1022cm−2, log of the ionization parameter, covering fraction and redshift.

BLR rather than absorption in Sy II [31]. From this we conclude that the BLR is absent rather
than obscured in this case. In other words, GSN 069 appears tobe another example of an AGN
classified as a Sy II galaxy but with little or no intrinsic absorption in the X-rays and with optical
line ratios inconsistent with heavy extinction. The X-ray spectrum could be reconciled with a Sy
II classification if the AGN was Compton-thick in the X-rays (although the optical line ratios do
not support this idea). However the soft X-ray variability on both short (doubling time of 800s in
the XMM-Newton observation) and long (see Table 2) timescales rules out this hypothesis, making
GSN 069 a “true Sy II” candidate, i.e. a candidate AGN with no BLR.

In the paradigm where the BLR is created from outflows of material from the disk, the outflow
may not be sustainable and hence the BLR may be absent ifLbol < 1042 erg s−1 [26] or if the
accretion rate is below a critical value ˙m< 0.01 [25].

The black hole mass,MBH, can be estimated from the normalisation of thediskbbmodel if
the emission is thermal, as it seems to be. Following Yuan et al. 2010 [30], and taking the disk
inclination as i=40◦ for simplicity, we derive the black hole mass asMBH = 1.7× 105 M⊙ for a
non-rotating black hole andMBH = 8.4×105 M⊙ for a maximally spinning Kerr black hole. The
accretion rate may be derived from the z-corrected temperature, to beṁ= 0.017−0.38 depending
on the black hole spin. An independent estimate ofMBH may be found from its relationship with
the bulge K band luminosity [28]. The 2MASS extended catalogue gives mK=12.75, for the whole
galaxy, which impliesMBH < 2.5×106 M⊙. The low mass of the black hole is also supported, to
some extent, by fast variability (doubling time of 800s) seen in the XMM-Newton light curve.

From the relationship betweenMBH, ṁand the FWHM of the BLR lines [6] we would expect
to be seeing broad lines with FWHM=560-1800 km s−1 in the optical spectrum.

The luminosity of the [OIII]5007 line in the 6dF spectrum is 1.1×1040 erg s−1 which implies

10
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a historicalLbol ∼ 1042 erg s−1 using a bolometric correction factor of 88–142 [29]; an order of
magnitude below the current value. If radiating at an efficiencyη = 0.1, the historical accretion rate
will have beenṁ= 0.009−0.047. In the past then, the source has been accreting and radiating close
to the critical values necessary to produce outflows and plausibly has been too weak to produce the
BLR. With the current AGN parameters an outflow should be sustainable, in which case we can
estimate the time necessary to form the BLR ast = v/d, wherev is the velocity of expanding
material andd is the distance of the BLR which will be∼ 10 days forLbol = 1043 erg s−1 [32].
Hence for outflow velocities of 1000-6000 km s−1 (e.g. [27]) BLR material will start to build up
after 2-12 months. A regular monitoring of the optical spectrum of GSN 069 may be able to detect
this process.

The apparently redshifted, strong edge observed at∼ 650 eV may be produced by a failed disk
outflow or from an inflowing accretion disk overlapping our line of sight.

In summary, the soft emission from this SY II appears to be thermal in origin and its variability
appears to be intrinsic to the central engine and not relatedto changes in line-of-sight absorption.
This mechanism may also be the cause of the strong variability seen in the other Sy II galaxies,
three of which haveLX < 1043 erg s−1 in their high state.
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