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Noncommutative Supergravity

1. Introduction

In the quest of a consistent quantum theory of gravity, noncommutativity of spacetime has
been actively considered in the last two decades. The main historical motivation resided in un-
certainty relations between coordinates, that could model "granularity”" of spacetime at the Planck
scale, and ensure a built-in regularization mechanism for the quantum theory. In string/brane theo-
ries, a framework that unifies particles and geometry as excitations of extended relativistic objects,
guantum finiteness is believed to hold because of the "smearing" of interactions due to the spa-
tial extension of the basic objects. A nhoncommuting (NC) scenario was seen to emerge from the
string/brane framework when considering the low-energy limit of open strings in a background
B-field [1]. Also the field theory effective description of the infinite tower of massive higher spins
contained in the string spectrum seems to point towards noncommutative geometric stragtures [

It seems fair to say that noncommutative geometry plays a central role in theories that aim to quan-
tize gravity.

Even lattice theories (for gauge fields and gravity) can be related to a NC geometric structure.
Indeed discrete group lattices, for example, can be endowed with a natural NC differential geometry
that enables to generalize (continuous) geometric quantities to the discrete case, thus allowing the
formulation of gauge and gravity actions on these discrete lattices (see for exanfplé&][and
references therein).

Quantum groups have also been investigated as an interesting arena for NC gauge and gravity
theories. Inhomogeneous quantum groups (including the quantum Poincaré group) and their NC
differential geometries have been used to construct NC generalizations of gravity lagrangians (see
for ex. the ref.s in€]).

NC gravity theories have been constructed more recently in the twisted honcommutative ge-
ometry settingT, 8, 9], that generalizes the Moyal deformation, where ordinary products between
fileds are replaced by the noncommutative Moyal product. In this setting the deformed theory is
invariant undex-diffeomorphisms, but indg] no gauge invariance on the tangent space (general-
izing local Lorentz symmetry) is incorporated, and therefore coupling to fermions could not be
implemented. A local symmetry, enlarging the 1084)3,1) symmetry ofD = 4 Einstein gravity
to GL(2,C), has been considered in the approach of Chamseddjn&lje resulting theory has a
complicated classical limit, with two vielbeins (or, equivalently, a complex vielbein). Noncommu-
tative gravities in lower dimensions have been studied th(D=2) and in [L1, 12] (D=3).

In these Proceedings we review the twisted NC deformations of gravity and supergravity the-
ories constructed in ref.4B, 14], where the noncommutativity is given bykgoroduct associated
to a very general class of twists. Thisoroduct can also be-dependent. As a particular case we
obtain noncommutative theories where noncommutativity is realized with the Moyal-Groenewald
*-product.

The topics reviewed here are:

1) a noncommutative gravity action, with a coupling to fermions, that reduces in the commu-
tative limit to the action of ordinary gravity + fermions, without extra fields (in particular without
an extra graviton). This is achieved by imposing a noncommutative charge conjugation condition
on the bosonic fields, consistent with thgauge transformations. We can also impose a nhoncom-
mutative generalization of the Majorana condition on the fermions, compatible withrgheige
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transformations. The action is invariant under diffeomorphisagiffeomorphisms and &L(2,C)
*-gauge symmetry that becomes ordinary local Lorentz symmetry in the commutative limit.

2) an action for a noncommutative deformationNf= 1 supergravity inD = 4, invariant
under diffeomorphisms and loc@lL(2,C) x-gauge transformations, but withossupersymmetry.
In this case noncommutativity breaks the local supersymmetry of the commutative theory. The
commutative limit is the usudd = 4, N = 1 simple supergravity, with a Majorana gravitino. We
can obtain locak-supersymmetry invariance of the noncommutative action if we impose a Weyl
condition on the fermions, rather than a Majorana condition. This leads to a honcommutative
supergravity whose commutative limit is a chiial= 4, N = 1 supergravity with two vierbein
fields (or a complex vierbein) and a left-handed gravitino.

In the Appendix we colledD = 4 gamma matrices conventions and properties.

2. First order gravity coupled to fermions

2.1 Action

The usual action of first-order gravity coupled to fermions can be recast in an index-free form,
convenient for generalization to the non-commutative case:

S:/Tr(iR/\V AVY—[(Dy)y — yDy] AV AV AV ) (2.2)

The fundamental fields are the 1-forfqspin connection)y (vielbein) and the fermionic O-form
v (spin 1/2 field). The curvature 2-forfR and the exterior covariant derivative gnare defined

by
R=dQ-QAQ, Dy=dy—Qy (2.2)

with

1
Q= Zwabyab, V =Vay, (2.3)

and thus are 4 4 matrices in the spinor representation. See Appendix Afer4 gamma matrix
conventions and useful relations. The Dirac conjugate is defined as wgealy'y. Then also
(Dy) vy, wDy are matrices in the spinor representation, and the ffaég taken on this represen-
tation. Using théD = 4 gamma matrix identities:

Yabc = igabchdY& Tr(YanYeYa¥s) = —4i €aped (2.4)

leads to the usual action:

S= /RabAvCAvdsabcd+i[1WDw— (DY) Py AVPAVE AV ga0eq (2.5)
with
R= %Rabyab, R = dw?® — i A 0P (2.6)
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2.2 Invariances

The action is invariant under local diffeomorphisms (it is the integral of a 4-form on a 4-
manifold) and under the local Lorentz rotations:

68V:_[\/78]7 SGQ:dS_[QaS]a 68”/:8‘//7 681V:_1p8 (27)
with 1
£ = 76" (2:8)

The invariance can be directly checked on the actibf) (oting that

0:R= —[R,E] SEDV]: eDy, 68((DW)® = _[(DW)IF’E]) 5€(WD® = —[WDIF, 8]7 (2.9)

using the cyclicity of the trac&r (on spinor indices) and the fact thatcommutes withys. The
Lorentz rotations close on the Lie algebra:

[6817 582] = _5[61,62] (2.10)

2.3 Hermiticity and charge conjugation

Since the vielbeiv? and the spin connectiom® are real fields, the following conditions
hold:

Wr=V" —nQp=0 (2.11)
1[(OY) W1 = [wDy]", 10lyDyln = (DY)’ (2.12)
and can be used to check that the acti@ni)(is real.
Moreover, ifC is theD = 4 charge conjugation matrix (antisymmetric and squaring 19,
we have
cvc=VT", cac=Q' (2.13)

since the matrice€y, andCy,, are symmetric.
Similar relations hold for the gauge parametes (1/4)ey,y:

—pep==¢', CeC=¢' (2.14)

€2 peing real.
The charge conjugation of fermions:

ye=C(y)’ (2.15)
can be extended to the bosonic fie\d2:
ve=—_cv'c, Q¢=cQ'c (2.16)
Then the relations 13 can be written as:

Ve=—v, Q°=0Q (2.17)
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and are the analogues of the Majorana condition for the fermions:
YW=y —y=y'C (2.18)

Note also that
(V)¢ =VCy© (2.19)

In particular, ify is a Majorana fermiorV y is anti-Majorana.

So far we have been treatingas a Dirac fermion, and therefore reality of the action requires
both terms in square brackets in the actidri) or (2.5). If y is Majorana, the two terms give the
same contribution, and only one of them is necessary.

2.4 Field equations
Using the cyclicity ofTr in (2.1), the variation ol , Q andy yield respectively the Einstein

eqguation, the torsion equation and the (massless) Dirac equation in index-free form:

Tr(yayg,[iv ARHIRAV — XAV AV —VAXAV —V AV /\X]) =0,

Tr(yab[iT AV —IV AT+ YV AV AV —V AV /\Vl//lﬂ) ~0 (2.20)
VAVAVADY — (TAVAV =VATAV+VAVAT)y =0 (2.21)

with
X = (Dy)y —yDy (2.22)

and where the torsioh = T2y, is given by:
T=dV-QAV-VAQ (2.23)
The torsion equation can be solved, and yields the known result:
Te=6i ypy VPAVE (2.24)

The Dirac equationZ.21) contains an extra term proportional to the torsion: this is due to requiring
a real action for gravity coupled to Dirac fermions. If one uses the (complex) Dirac action

Soirac =~ [ TH(DY) WAV AV AV (2.25)

the torsion terms in the Dirac equatidhZ1) are not present.

3. Twist differential geometry

The noncommutative deformation of the gravity theories we construct in the next Sections
relies on the existence (in the deformation quantization context, see f@Bexdf an associative
*-product between functions and more generally an associatiegterior product between forms,
satisfying the following properties:
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o Compatibility with the undeformed exterior differential:
d(tAT) =d(7) Avt = TAdT (3.1)
e Compatibility with the undeformed integral (graded cyclicity property):

/r/\* T = (fl)deq’)deqfl)/r’ AT (3.2)

with deg 7) 4+ deg 7') =D=dimension of the spacetime manifold, and where heaad t’ have
compact support (otherwise stated we requi@)(to hold up to boundary terms).

e Compatibility with the undeformed complex conjugation:
(’L'/\* Tl)* _ (_1)degr)deq#)fl* A, T (3.3)

We describe here a (quite wide) class of twists whegeoducts have all these properties. In this
way we have constructed a wide class of noncommutative deformations of gravity theories. Of
course as a particular case we have the Groenewold-Megedduct

frg=u{e® %% fggl, (3.4)

where the magu is the usual pointwise multiplicationu(f ® g) = fg, and6P° is a constant
antisymmetric matrix.

3.1 Twist

Let = be the linear space of smooth vector fields on a smooth marieldndU = its universal
enveloping algebra. A twis# € U=®U = defines the associative twisted product

fxg=p{F fag} (3.5)

where the mapu is the usual pointwise multiplicatiomu(f @ g) = fg. The product associativity
relies on the defining properties of the twigt [L9, 20]. Using the standard notation

F =20ty F1=1"xf, (3.6)

(sum overa understood) where“tfa,fa,fa are elements of) =, the x-product is expressed in
terms of ordinary products as:

fxg=F"(f)fa(g) (3.7)
Many explicit examples of twist are provided by the so-called abelian twists:

F = e 267%X (3.8)

where {X,} is a set of mutually commuting vector fields, a8 is a constant antisymmetric
matrix. The corresponding-product is in general position dependent because the vector Xglds

are in generak-dependent. In the special case that there exists a global coordinate system on the

manifold we can consider the vector fields= -2. In this instance we have the Moyal twist, cf.

= 2.
(3.9):

F =20 %0 (3.9)
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3.2 Deformed exterior product

The deformed exterior product between forms is defined as

AT =1(1) AT (7)) (3.10)

wheref” andf,, act on forms via the Lie derivative®«, .%; (Lie derivatives along products/- - -
of elements of= are defined simply byA... = A% ---). This product is associative, and in
particular satisfies:

TAh*T =1TxhA T, hx(TAT) = (hxT) AT, (TAT)*xh=1TA, (7' xh) (3.11)

whereh is a 0-form, i.e. a function belonging un(M), the x-product between functions and
one-forms being just a particular case 8f10):

hxt=F“(h)fa(r), Txh=T"(7)fa(h) (3.12)

3.3 Exterior derivative

The exterior derivative satisfies the usual (graded) Leibniz rule, since it commutes with the Lie
derivative:

d(fxg) =dfxg+ fxdg (3.13)
d(tA, ) =dtA T+ (—1)9%9) T A, dT (3.14)

3.4 Integration: graded cyclicity

If we consider an abelian twis8(8) given by globally defined commuting vector fieldg then the
usual integral is cyclic under theexterior products of forms, i.e., up to boundary terms,

/r/\* T = (—l)degf)degf/)/f’ AT (3.15)
with deg ) + deg7’) =D=dimension of the spacetime manifold. In fact we have
/r/\* 7= /r/\ 7= (—1)deqf)deqf,)/f’ AT = (—1)dedr)ded) /r’ Ak T (3.16)
For example at first order i@,
/T/\*‘L":/‘E/\‘L"—;Oab/fxa(f/\fxbfl) :/r/\‘c’—izeab/di&(r/\fxbr’) (3.17)
where we used the Cartan formulé, = dix, +ix,d.

3.5 Complex conjugation

If we choose real fieldX, in the definition of the twist.8), it is immediate to verify that:
(fxg)" =g «f" (3.18)

(T/\* T/)* _ (_1)degﬂ)deqa:’)f/* Ay T (319)
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since sendinginto —i in the twist 3.9) amounts to sené? into —2° = §°2 j.e. to exchange the
order of the factors in the-product.

More in general we can consider twis#s that satisfy the reality condition (cf. Section 8 in
[8]) F* ®f," = S(fo) ® S(F%). Thex-products associated to these twists satisfy propedia$)

(3.19.

4. Noncommutative gravity coupled to fermions

4.1 Action and symmetries

Here we generalize Section 2 to the noncommutative case, mostly by replacing exterior prod-
ucts by deformed exterior products. Thus the action becomes:

S= /Tr (IRAV ANVY — [(DY)x ¥ — wxDY] ALV ALV ALV ) (4.1)
with
R=dQ-QA,Q, Dy=dy—-Qxy (4.2)
Almost all formulae in Section 2 continue to hold, withproducts and-exterior products.

However, the expansion of the fundamental fields on the Dirac basis of gamma matrices must now
include new contributions:

1 . ~ ~
Q=0 +iol+d%, V=Vt Viu (4.3)
Similarly for the curvature :
1 . o
R= R Fap+ir 1+ (4.4)
and for the gauge parameter:
1 : ~
€= ZSab'}’ab-f— iel+€ys (4.5)

Indeed now the-gauge variations read:
0V =-Vxet+exV, §:Q=de—Qxe+exQ, Sy=¢€*xy, SY=—Y*e (4.6)

and in the variations fo¥ and Q also anticommutators of gamma matrices appear, due to the
noncommutativity of the«-product. Since for example the anticommutafgsp, y.q} contains 1

and y5, we see that the corresponding fields must be included in the expanston Similarly,

V must contain g,ys term due to{yap, 1c}. Finally, the composition law for gauge parameters
becomes:

[5817 682] = 682*&*61*82 (47)

so thate must contain the 1 ang terms, since they appear in the composite paransgtes; —
E1x Ep.

The invariance of the noncommutative actignlj under thex-variations is demonstrated in
exactly the same way as for the commutative case, noting that

6eR=—Rxe+exR 6Dy =¢exDy, & ((Dy)xy)=—(Dy)xyxe+ex(Dy)xy (4.8)
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etc., and using now, besides the cyclicity of the tracend the fact that still commutes withys,
also the graded cyclicity of the integral.
The localx-symmetry satisfies the Lie algebra®E(2,C), and centrally extends tf#Q(1, 3)
Lie algebra of the commutative theory.
Finally, thex-action @.1) is invariant under diffeomorphisms generated by the Lie derivative,
in the sense that

/.,2”\,(4—form) = /(ivd+di\,)(4—form) = /d(iv(4—form)) = boundary term (4.9)

sinced(4—form) = 0 on a 4-dimensional manifold.

We have constructed a geometric lagrangian where the fields are exterior forms and the
product is given by the Lie derivative action of the twist on forms. The twisin general is not
invariant under the diffeomorphisii,. However we can consider thediffeomorphisms of ref.

[8] (see also19], section 8.2.4), generated by thkd.ie derivative. This latter acts trivially on the
twist .# but satisfies a deformed Leibniz rule-Lie derivatives generate infinitesimal noncom-
mutative diffeomorphisms and leave invariant the action and the twist. They are noncommutative
symmetries of our action.

Finally in our geometric action no coordinate indiges’ appear, and this implies invariance
of the action under (undeformed) general coordinate transformations. Otherwise stated every con=
travariant tensor indeX is contracted with the corresponding covariant tensor indésr example
Xa = X4 0, andva = Vadx:.

4.2 Field equations

Using the cyclicity ofTr and the graded cyclicity of the integral i#.(), the variation o , Q and
v yield respectively the noncommutative Einstein equation, torsion equation and Dirac equation in
index-free form:

TrFaas(iV AcR+HIRALVY = XAV ALV =VAXANV =VAVAX)]=0

TrMab1s(iT ALV =V AT+ yx sV ANV AV =V ANV ANV *y+ )] =0
(4.10)

VANVANVADY = (TAVANVY -=VATAVHVAVAT) xy=0

wherel 455 indicatesy, and ya% (thus there are two distinct equations) and likewiselfgf1 s
(three equations correspondingit®, 1 andys). The noncommutative torsion two-form is defined
by:

T=T%+T2mE=dV-QA,V-VAQ (4.11)

The torsion equatiord(10 can be written as:
(TANV—VAT+HyxyxVANVAV -VAVAVxyxy, 1l =0 (4.12)

Indeed the anticommutator witls selects they,, 1 andy components. This equation can be
solved for the torsion:

T:lz[q/*lﬁ*V/\*V—i—V/\*u/*lF*V PV AN YA R T (4.13)

as can be verified by substitution intb.12).
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4.3 0 - dependent fields

We can rewrite the Moyal twist as:

F 1 =209 %0 (4.14)

where 0 is a dimensionful parameter (so th@f°® is a numerical matrix). In the spirit of the
Seiberg-Witten mapl], the fields and the gauge parameter can be considered functigasd®.
Expanding field®) and gauge parametelin powers ofo:

0o (X) = o(X) + 001(X) + 0%92(X) + ..., €o(X) = &0(X) + O&1(X) + 02€x(X) + ... (4.15)

introduces an infinite tower of - dependent fields and gauge parameters: a finite number of them
enters in the action4(1) at each given order i@. At O-th order only the classical fieldg(x)
contribute. The gauge variations of @llare deduced by expanding thegauge transformations
in (4.6) in powers off. Clearly the classical fieldg transform with the classical gauge variations
80,

If one feels uncomfortable with these new fielgls the Seiberg-Witten map can be used to
relate the higher-order fields to the classical ones in a way consistent with-thauge transfor-
mationsé,:

Sed(90) = 9 (82¢o) (4.16)

so that thex-deformed theory will contain only thé, fields [1, 16].
All the fieldsV?2, V2, 02, », and® contained in the actiori(1) are therp-expanded, and the
0-th order action contains ther— O limit.

4.4 Hermiticity and charge conjugation

Hermiticity conditions can be imposed dh Q and the gauge parameter
W=V —0Qu=0" —pep=¢ (4.17)
Moreover it is easy to verify the analogues of conditiohd D):

(DY) * W1 = [y xDW]", %[y +Dyly =Dy xy]’ (4.18)

These hermiticity conditions are consistent with the gauge variations, as in the commutative case,
and can be used to check that the acti®r)(is real. On the component fiel¥&, Va 02 @, and
@, and on the component gauge parametéPse, andé the hermiticity conditions4.17) imply
that they are real fields.

The charge conjugation relation®.{3), however, cannot be exported to the noncommutative
case as they are. Indeed they would imply the vanishing of the component\fields, and &
(whose presence is necessary in the noncommutative case) and moreover would not be consistent
with the x-gauge variations.

An essential modification is heeded, and makes use d thependence of the noncommuta-
tive fields:

CVo(X)IC=V_g(X)T, CQe(X)C=0Q_g(X)7, Cey(X)C=e_g(x)T (4.19)

10
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These conditions can be checked to be consistent witk-tieuge transformations. For example
CVp(x)"C can be shown to transform in the same way/ag(x):

8e(CVy C) = C(8:Vg)"C=C(—¢4 % gVg +Vg *_g€5)C=
= E g*_9g V,Q —V,Q *_gE_g = SgV,Q (420)

where we have use@? = —1 and the fact that the transposition ofgroduct of matrix-valued
fields interchanges the order of the matrices but not oktheultiplied fields. To interchange both
it is necessary to use the "reflected’y product obtained by changing the signéafsince

fxgg=gx_o f (4.21)

for any two functionsf,g.
For the component fields and gauge parameters the charge conjugation conditions imply:

VE=V3, o= o0 (4.22)

\793 == —\7_ae, 609 == —w_e, (be = —(1.)_97 (423)
Similarly for the gauge parameters:

e — g2 (4.24)
0 0

€g=—€_¢4, Eg=—E_ ¢ (4.25)
Finally, let us consider the charge conjugate spinor:
ye=C(y)’ (4.26)
It transforms undek-gauge variations as:
S yC =C(8: )T =C(—yre)T =C(—e" x_gy*) =Ce'Cx_ogCy* =€ gx_gy® (4.27)

i.e. it transforms in the same way as 4. Then we can impose the noncommutative Majorana
condition:

VE=v_9 = vin=ylC (4.28)

4.5 Commutative limit @ — 0

In the commutative limit the action reduces to the usual action of gravity coupled to fermions
ofeq. €.1). Indeed in virtue of the charge conjugation condition¥andQ, the component fields
V2, , and® all vanish in the limitd — 0 (see the second line o4.¢3), and only the classical
spin connectiom?®, vierbeinV? and Dirac fermiony survive. Similarly the gauge parameters
andé vanish in the commutative limit.

11
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5. ClassicalD = 4, N = 1 supergravity

TheD = 4, N = 1 simple supergravity action can be written in index-free notation as follows:

S:/Tr[iR(Q)/\V/\Vys—Z(p/\IF—F WAP) AV (5.1)

The fundamental fields are the 1-fors(spin connection)y (vielbein) and gravitinoy. The
curvature 2-forrR and the gravitino curvature are defined by

R=dQ-QAQ, p=Dy=dy—Qvy, p=Dy=dy—yArQ (5.2)

with 1
Q= Za)abyab, V =Viy (5.3)

and thus are 4 4 matrices with spinor indices. See Appendix CBo+= 4 gamma matrix conven-
tions and useful relations. The Dirac conjugate is defined as ugual:y'y. Then alsop A y
andy A p are matrices in the spinor representation, and the facetaken on this representation.
The gravitino field satisfies the Majorana condition:

yip=y'C (5.4)

whereC is theD = 4 charge conjugation matrix, antisymmetric and squaringlo
Using theD = 4 gamma matrix trace identity:

Tr(YabYeYa¥s) = —4i€abed (5.5)

leads to the usual supergravity action in terms of the component ¥ié|ds2 :

S= / RED AVE AV ganeq— 47 A YsYap AV (5.6)
with 1
R= 7 R, R =do® — wd A o (5.7)
We have also used
PYsYaV = V)5YaP (5.8)

due toy andp being Majorana spinors

5.1 Field equations and Bianchi identities

Using the cyclicity of theTr in the action §.1), the variation oV, Q andy yield respectively
the Einstein equation, the torsion equation and the gravitino equation in index-free form:

Tryays(—IV AR—IRAV +2(p Ay +wAp)| =0 (5.9)
Triyap(iT AV —VAT4+20 Ay AV —2VAYAY)| =0 (5.10)

1Then the two addends in the fermionic part of the acti®n)(are equal, so that we could have used only one of
them, with factor—4. However in the noncommutative extension both will be necessary.

12
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VADy =0 (5.11)
where the torsiod = T2y, is defined as:
T=dV-—QAV-VAQ (5.12)
The solution of the torsion equatioh.(0 is given by:
T=ily Ay, BlE=IVAy iy Ay (5.13)
Upon use of the Fierz identity for Majorana spinor one-forms:

1

STV A Y (5.14)

_ 1 _
YAV = 2Ry AY -
the torsion is seen to satisfy the familiar condition

i —
T=T%= équa/\ VYa (5.15)

Finally, the Bianchi identities for the curvatures and the torsion are:

dR=—-RAQ+QAR (5.16)
dp=-RAY+QAp, dp=wAR—-pAQ (5.17)
dT=-RAV+QAT-TAQ+VAR (5.18)

The terms with the spin connectidh reconstruct covariant derivatives of the curvatures and the
torsion.

5.2 Invariances

We know that the classical supergravity actibrj is invariant under general coordinate trans-
formations, under local Lorentz rotations and under local supersymmetry transformations. It is of
interest to write the transformation rules of the fields in the index-free notation, so as to verify the
invariances directly on the index-free actidnl).

Local Lorentz rotations

68V:_[V78]7 (SgQ:dS—[Q,S], 5&“[/:8‘1/7 68]*?:_1?8 (519)
with 1
€= Zeabyab (5.20)

The invariance can be directly checked on the actiof) (oting that
68R:_[R78]7 68Dw:8DW7 68DlF: _(Dlp)g (521)

using the cyclicity of the trac&r (on spinor indices) and the fact thacommutes withys. The
Lorentz rotations close on the Lie algebra:

[0y, 0] = Ojey ey (5.22)

13
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Local supersymmetry

The supersymmetry variations are:
SV =iley — ye, 1]y, S.w=De=de—Qe (5.23)

where nowe is a spinorial parameter (satisfying the Majorana condition). Notice that &)&n
not varied since we work in 1.5 - order formalism, i&satisfies its own equation of motios.(0).
The commutator of y — we with 5 in the supersymmetry variation Wfeliminates the terms
even iny, in the Fierz expansion of two generic anticommuting spinors (see Appendix C). More-
over, sincee and y are Majorana spinors, the combinatiey — ye ensures that only the,
component survives. Theb.@3 reproduce the usual supersymmetry variations (see below).
The variations%.23 imply:
Sy =De=de+€Q, 6p=-Re, &p=c¢R (5.24)
Then the action varies as:
8:S= /2 TrRA (e —ey) AV +RAV A (e —ey)ys] —
-2 Tr[(— REAWAV +pA(de+€Q)AV + (ds—Qe)/\EAVer/\ER/\V)yS]
F2ATr{(pAY+yAp)(ye—ey)s— (P AY+WAP)(WE—ey)] (5.25)

After integrating by parts the terms witte andde, and using the Bianchi identitys(17) for dp
the variation becomes:

6:S= /2Tr[RA (ye—ey) AVs+RAV A (ye —ey)ys) —
—2Tr[(—Re/\lﬁ/\V—i—p/\EQ/\V—Qs/\ﬁ/\V—H///\ER/\V—i—
+(RAY—QAP)EAV —peAN(T+QAV+VAQ) —

—e(—pAQ+YAP)AV —gp A (T+QAV+VAQ))y5]+
F2ATr[(pAY+yAp)(ye—ey)s— (P AY+WAP)s(WE—ey)] (5.26)

where we have substitutety by T + Q AV +V A Q (torsion definition). Using now the cyclicity
of Tr , and the fact thajs anticommutes with/ and commutes witlf, all terms can be easily
checked to cancel, except those containing the tofBiand the last line (four-fermion terms).

Once we make use of the torsion equatidn i@ to expresd in terms of gravitino fields, the
variation reduces to:

8:S= Zi/Tr[pEA(WA VB —BYAY)+EPA(YAYE—BYAY)
+(PAYHYAP)A(YE—eW) = (PAY+YAP) A(YE—eY)] (5.27)

Finally, carrying out the trace on spinor indices results in

8:S= 2i/(!/76—5w) ANYBAP —PBAY)+(YAP —pAY)A(YrsE—EBY)
+(ep —pe) N (YA Y) + (prsE — 1) A (YA Y) (5.28)

14
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Each factor between parentheses vanishes, due to all spinors being Majorana spinors. This proves
the invariance of the classical supergravity action under the local supersymmetry variatiins (

On the component fields, the Lorentz transformatidns9d read:

PAVAES YA
5,0% = de® 1 e2p b — £Cg 3
Sev = 36wy (5.29)
and the supersymmetry variatiorisZ3 become:
SeVe =gy
Sey =de — %wabyabs (5.30)

6. NoncommutativeD = 4, N = 1 supergravity

6.1 Action andGL(2,C) x-gauge symmetry

A noncommutative generalization of tlle= 4, N = 1 simple supergravity action is obtained
by replacing exterior products byexterior products ing.1):

S— /Tr [IR(Q) ALV ANV +2(p A Wt WAL D) ALV 6.1)
where the curvature 2-forfiR and the gravitino curvature are defined as:
R=dQ-QA,Q, p=Dy=dy—Qxy (6.2)

Almost all formulae of the commutative case continue to hold, with ordinary products re-
placed byx-products and-exterior products. However, the expansion of the fundamental fields on
the Dirac basis of gamma matrices must now include new contributions; more precisely the spin
connection contains all even gamma matrices and the vielbein contains all odd gamma matrices:

1 _ ~ N
Q= Zwabyab‘F i0l+dr, V=Vi%+Vinark (6.3)

The one-form®£) andV are thus also 4 4 matrices with spinor indices. Similarly for the curvature

1 . o
R= ZRabyab+|rl+ry5 (6.4)
and for the gauge parameter:
€= %.Eab'}’ab-f— iel+ép (6.5)

Indeed now the-gauge variations read:
0V =—-Vxet+exV, 5:Q=de—Qxe+exQ, Sw=¢exy, SY=—yYx*e (6.6)

and in the variations fo¥ and Q also anticommutators of gamma matrices appear, due to the
noncommutativity of the--product. Since for example the anticommutafgpy, 7.q} contains 1
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and s, we see that the corresponding fields must be included in the expansfon Similarly,
V must contain g,ys term due to{yap, 1c}. Finally, the composition law for gauge parameters
becomes:

[6817 682] = 6&‘2*€17£1*82 (6-7)

so thate must contain the 1 ang terms, since they appear in the composite paransgtes; —
E1x &,

The invariance of the noncommutative acti@éhlf under thex-gauge variations is demon-
strated in exactly the same way as for the commutative case, noting that

6:R=—Rxe+exR, 8Dy =¢exDy, & ((Dy)Ay)=—(Dy)A yxe+ex(Dy)A, v (6.8)

and using now, besides the cyclicity of the trdaeand the fact that still commutes withys, also
the graded cyclicity of the integral.

6.2 Localx-supersymmetry

Thex-supersymmetry variations are obtained from the classical ones-ugragucts:
SV =ilexy—yxe, wlys Sy =de—Qxe (6.9)

wheree is a spinorial parameter. Under these variations the noncommutative action varies as given
in (5.28, with ordinary products substituted withproducts. Indeed the algebra is identical, since

75 still anticommutes with/ and commutes witk, and we can use the cyclicity 6 and graded
cyclicity of the integral.

The question is now: does this variation vanish? Classically it vanishes because of the Ma-
jorana condition on the spinors (gravitino and supersymmetry gauge parameter). We recall the
noncommutative generalization of the Majorana condition, consistent witk-gaige transfor-
mations [L3]:

Ve=vo ¥ =Cy)' (6.10)

This condition involves thé dependence of the fieldsand is consistent with the-gauge trans-
formations only if the gauge parameter satisfies the charge conjugation condlijon [

CepC=eTy (6.11)

The NC Majorana condition6(10) is consistent also with-supersymmetry transformations if
the supersymmetry parameter is Majorana, and the bosonic fields satisfy the charge conjugation
conditions

CQ,C=0Q7,, CV,C=VT, (6.12)

Now consider the first term in the supersymmetry variation of the action (for the other three
terms the reasoning is identical):

2 [(Fre—Exw) A (15 p— P15 A W) (6.13)

2The fields can be formally expanded in powersgofin principle this picture would introduce infinitely many
fields, one for each power &. However the Seiberg-Witten map, [L6] can be used to express all fields in terms of the
classical one, ending up with a finite number of fields.
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If v ande are noncommutative Majorana fermions, they satisfy the relations:

YXE=E gx gV g, VEAP=P_g¥% N\ gVY g (6.14)

and one sees thab.(L3 does not vanish anymore (although it vanishes in the commutative limit).
Thus the NC Majorana condition does not ensure the leespersymmetry invariance of the
action in @.1). In fact, the local supersymmetry of the commutative action is broken by noncom-
mutativity.

There is another condition that we can impose on fermi fields, the Weyl condition, still consis-
tent with thex-symmetry structure of the action:

BY =V, BE=E (6.15)

i.e. all fermions are left-handed (so that their Dirac conjugatesde are right-handed). In this

case the locak-supersymmetry variation vanishes because in all the fermion bilinearg tha-

trices can be omitted, and the product of a right-handed spinor with a left-handed spinor vanishes;
Thus the noncommutative supergravity actiéri) with Weyl fermions is locally supersymmetric.

Note that now we cannot impose the charge conjugation relattohg ©n the bosonic fields:
indeedx-supersymmetry links together these relations with the NC Majorana condition, which is
not compatible irD = 4 with the Weyl condition (as in the classical case).

The 6 — 0 limit of this chiral noncommutative theory is a complex version of the so-called
D =4,N =1 Weyl supergravity and is discussed in Section 4.6 below.

6.3 Hermiticity conditions and reality of the action
Hermiticity conditions can be imposed dh Q and the gauge parameter
Wr=V —0Qu=0" —pep=¢ (6.16)
Moreover it is easy to verify that :
tolo AWt = [wAp)! (6.17)
These conditions are consistent with thgauge and-supersymmetry variations (both for Ma-
jorana and chiral fermions), as in the commutative case, and can be used to check that the action

(6.1) is real. The hermiticity conditions imply that the component fialdsV?2, 0, o, and®,
and gauge parameter®, ¢, andg are real fields.

6.4 Component analysis

Here we list thex-gauge and supersymmetry variations of the component fields. In the super-
symmetry variations we consider both Majorana and Weyl fermions.
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6.4.1 x-Gauge variations

1 . -
82 = (£ #VPO+VPxeh) + Lll.eabcd(vb*.eCd e, b)

4 exVE3_V3xe _FxVEa_VaxE
- 1 ~ ~ i
PAVAES 5(e'gﬁ)*vb +VPxed) + Ze"’gcd(vb*eco' —efdyvb)
+exV23—V3%e —ExVE3_VaxE

1

S 0 = é(s"‘c* 0P — 2« 0@+ P x 2 — 0 D)
i .~

+ Zr(8"’“’*(9 —0xe®) + éeagd(ec‘j*a) — @ xe%)

1
+ > (ex 0? ab

A i
2 *e)+§£ c(Exo°

b d d

—o? — 0% E)

1 e e
36(9:é(wab*sab—sab*wab)+e*a)—w*e+e*a)—w*e
8.6 i ab, .c
e® = 7 Eabed( 7% €

6.4.2 Supersymmetry variations: Majorana fermions

d d

— e 0®) f XD — DrEFEXD— OXE

SV = lZTr[(e*lp_ e
897 = S Trl(exir— y+&)7m
Oy = de — %1((’Elt)7’61b6 —(io+dp)e

6.4.3 Supersymmetry variations: Weyl fermions

8VR = 6.7 = JTrl(e+ ¥~ y &)

Sy =de — %wabyabe —(io+d)e

6.4.4 Charge conjugation conditions

The charge conjugation relatiors. {2 imply for the component fields:

a a ab ab
Ve :V—97 (1)9 == a)_e
7a 7a ~ ~
Vo =V, Wg=—0_¢g, 0=—0_,
and for the gauge parameters:
ab __ .ab
g =¢€7,
gg=—€g, Eg=—E ¢

(6.18)

(6.19)

(6.20)
(6.21)

(6.22)

(6.23)
(6.24)

(6.25)

(6.26)

(6.27)

(6.28)
(6.29)

(6.30)
(6.31)
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6.5 Field equations and Bianchi identities

Using the cyclicity of the integral and of thEr in the action 6.1), the variation oV, Q
andy yield respectively the Einstein equation, the torsion equation and the gravitino equation in
index-free form:

TrFass(—V A, R—IRALNV +2(p A, W+ WA P)] =0 (6.32)
Trllap1s5(iT ALV =V A TH2y A, WAV =2V A WA W) =0 (6.33)
V/\*DI/I—%T ANy =0 (6.34)

whererl 41 5 indicatesyap, 1 andys (thus there are three distinct equations) and likewisé fqg
(two equations corresponding @ andyays). The torsionT = T2y, + T2y,7s is defined as:

T=dV-QA,V-VA,Q (6.35)
The torsion equation can be written as:
ITAN=VATH2U AL YA =2V AL WAL Y, 18] =0 (6.36)

since the anticommutator witly selects thexy, 1 andys components. This equation can be solved
for the torsion:

T=iy Ay, BB=YA Y —iBY Ay (6.37)

For chiral gravitini:

T=2iyA. ¥ (6.38)
The Bianchi identities for the curvatures and the torsion are obtained from the commutative ones
simply by replacing exterior products kyexterior products.

6.6 Commutative limit

The nonsupersymmetric NC theory with NC Majorana gravitino, and charge conjugation con-
ditions 6.12), reduces in th@ — 0 limit to the usuaD = 4, N = 1 supergravity. Indeed the charge
conjugation conditions ok and Q imply that the component fieldé?, w, and® all vanish in
the limit & — 0 (see the second line 08.29), and only the classical spin connectiai®, vier-
beinVV2 and Majorana fermiory survive. Similarly the gauge parametersandé vanish in the
commutative limit.

In the chiral case, the extra vielbeW? cannot vanish in the commutative limit, since its
supersymmetry variation is equal to that\6f. Then one obtains a commutative limit that is a
(locally) supersymmetric version of gravity with a complex vielbein studied by Chamseddine, or a
bigravity-like theory (in our case a super-bigravity theory). For a discussion on chiral supergravity
see for ex. 17]. A detailed study of this commutative limit will not be carried out in the present
paper.
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7. Conclusions

The index-free notation, based on Clifford algebra expansion of the bosonic fields (see for ex.
ref.s [L7, 7]), allows to study invariances with simple algebraic manipulations. This framework
is ideally suited to study noncommutative generalizations of field theories containing gravity, cf.
ref.s [7], where a complex nhoncommutative gravity was proposed. In these Proceedings we have
reviewed our construction of a a NC gravity with a commutative limit coinciding with the usual
Einstein-Cartan theory. We proved that a NC charge conjugation condition on the vierbein and on
the spin connection yields a real vierbein in the commutative limit. The theory can also be coupled
to (Majorana) fermion zero-forms (spin 1/2).

We have then presented noncommutative supergravidy-in4 : if we use the NC Majorana
condition for the gravitino, the action is netsupersymmetric. However also in this case we can
impose charge conjugation conditions on the vierbein and spin connection, so that the commutative
limit of the theory reproduces usual= 4, N = 1 supergravity.

We recover-local supersymmetry of the action when the gravitino is chiral. In this case we
cannot impose the charge conjugation condition on the vierbein (because-supersymmetry
requires the NC Majorana condition on the gravitino), and therefore the commutative limit does not
involve only one real vierbein, but reduces to a chdak 4, N = 1 supergravity with a complex
vierbein.

Note that thex-products deformations considered in this paper are associated to a very general
triangular Drinfeld twist.#, a particular case being the Groenewold-Moygbroduct. In our
general framework one could consider promoting the twisitself to a dynamical field, sed §]
for an example in the flat case.

Finally, we briefly comment on a class of solutio4,[22] for the NC gravity and supergrav-
ity theories we have reviewed. These solutions can be simply obtained by consiclesagal
solutions for the vielbein and their classical Killing vectors, i.e. solutions of the undeformed theory
and their symmetries. Using a subgebf these Killing vectors talefinea star product, all star
products involving the vielbein reduce to ordinary products, sihcan always be chosen to satisfy
2V = 0. ThenV is a solution also for the - equations of motion of the deformed theory.

Acknowledgementslt is a pleasure to thank the Corfu Summer Institute of elementary particle
physics, that hosted this Workshop. It provided a perfect setting for discussions, in an enchanting
and stimulating atmosphere.

8. Appendix : gamma matrices inD =4

We summarize in this Appendix our gamma matrix conventiors ia 4.

Nab=(1,-1,-1,-1), {%a M} =2Nan, [Ya W] = 2%ab, (8.1)
B=ipnrs Br=1 tns=-e"P=1 (8.2)
=1kl %H=% (8.3)
v =—CpC?t, W=CcpC? C?=-1, C"=-C (8.4)
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8.1 Useful identities

Yalb = Yab+ Tab (8.5)
Yab¥s = l28abcd7’C d (8.6)
Yab¥e = TocYa — Macth — i€apcd¥sy” (8.7)
YeYab = Tacth — ThcYa — i€apcd¥sy” (8.8)
Ya¥Ye = Nab¥e + Nocta — Nackh — i €abcdls¥° (8.9)
PP%q = -0y — 45[[??)0] 1~ 285 (8.10)

8.2 Charge conjugation and Majorana condition

Dirac conjugatey = v’y (8.11)
Charge conjugate spinap® = C(y)' (8.12)
Majorana spinory® =y = y=y'C (8.13)

8.3 Fierz identities for two spinor one-forms

VAY = i[(ﬂ )1+ (XA B+ XAV Ya+ (X BEAW) Y — %(W‘bA V)% (8.14)

Noncommutative Fierz identities
_ 1
VA= Z[TV(V’/\*JZ)]-JFTr(‘I/?’S/\*)Z)YBJFTV(V’Ya/\*@YaJr

Tr(yy2 s A X)Yals — %Tr(wabm@yab] (8.15)
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