PROCEEDINGS

OF SCIENCE

Two Aspects of M-(brane) theory

Jens Hoppe*
Sogang University
E-mail: hoppe@sogang.ac.kr

The Reconstruction Algebra of [3] is quantized, and a novel approach to Quantum M-branes
presented.

Corfu Summer Institute on Elementary Particles and Physics - Workshop on Non Commutative Field
Theory and Gravity,

September 8-12, 2010

Corfu Greece

*Speaker.

(© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/


mailto:hoppe@sogang.ac.kr

Two Aspects of M-(brane) theory Jens Hoppe

The attempt to quantize Relativistic M(em)branes (M-dimensional extended objects in D-
dimensional space-time) is intimately related to non-commutative field theory and gravity. The
fuzzy sphere was invented in this context (cp. [1]), and the hope of including gravity is reflected
from many points of view (e.g. [2]). Here I would like to report on 2 topics relevant to this en-
davour, namely

A) Quantum Reconstruction Algebras

In a recent paper [3] it was found that the reconstruction [4] of the coordinate which disappears in
the light cone description of relativistic extended objects,
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leads to higher-dimensional generalisations of the Witt-Virasoro algebra, when considering the
(classical or quantum) commutation relations of the field { at different points ¢ of the parameter
manifold X, (modulo volume-preserving diffeomorphisms);

Namely
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where
Hp — Hy Hp — Hy

o

docﬁy (3)

Capy = /EM YoYpYypd" ¢ =:

with Yy, resp. —lg (@ =1,2,...), being the (non-constant) eigenfunctions, resp (negative) eigen-
values of the Laplacian on Xy, A = %aaph“b dp, Vdeth® =p
In [3] it was shown that (modulo volume-preserving diffeomorphisms)

o = n/YaC(qJ)de(P, a=12,.. )
form a representation of (2), with [, ] being the classical Poisson bracket. Rewriting (1) as
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one finds that
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and that Ea can be written as
Ca = 506 +Ea = (daﬁy‘i‘eaﬁy)?/i 7}/ (8)

Promoting the classical variables, x;g and pyy, to quantum operators satisfying

[xig, Pky] = i6kSpy, &)
it is not difficult to see that
s i
COC = 7<D06 +EOC)? 2Dg = daﬁy(x_ﬁ)?y"i_p—;f?ﬁ)’ Eq = eaﬁyx—lgﬁy (10)

2

will form a representation of (7), with [, | the ordinary commutator of operators. Rather than lifting
the derivation given in [3] to one involving quantummechanical operators one can also formally
verify (7) by showing that

[DaaDOt/] :i<7a7a’_?a/?a) (1)
Do Eqr] + [Eq; Do) = Zie[a,a’]eDs (12)
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To obtain (11) one simply notes that
daeydoc/ﬁs - docﬁsda’ey = _6ocy6oc’/3 + 5a[3 6a’y (14)

due to the completeness-relation

oo
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To obtain (12) one first obtains
Z[Da»Ea/] = i(d(xsyea’ﬁe - docﬁeea’sy) (?[3 ?y + ?y7ﬁ)
and then proves that

eaepdoey T eaeydorep — €arepdacy — eoc’eydasﬁ (16)

= (eqare — ea’as)dsﬁy>
using
1
Capy = M/Ya(YﬁAYy—YyAYB)de(p (17)
o

and (15).
The calculation leading to (2) in [3] then implies that ( modulo volume-preserving diffeomor-
phisms/topological terms)

eqcBla’cy — €qrefCasy T 6a[3 50:’7 - 6ay5a/[3 ~ (eqare — ea’ae)eeﬁy (18)
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which proves (13).
For M = 2, an identity related to (18) has been derived in [5], using a completeness relation
that allows to write problematic terms involving

1 o
Zﬁaays((l))ahys(q’) (19)

(appearing also on the r.h.s. of (18)) in terms of harmonic vectorfields, and €0 0% Y€1y 07 Ye
(leading to terms proportional to the areapreserving diffeomorphism constraints), and J(@, ).
Otherwise, the ‘trick’ is again to use (17) and (15), resp. to write

(eozsﬁ €o'ey — €alep eaey) lallo
= (13 + pptty — He (Hp + 1y))daepdorey — (0 = o) (20)
= /YOCAYSY[;/Ya/AYSYY+/YaY£AYﬁ/Ya/YEAYY
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and use (15), after integrating by parts in order to have no derivative acting on Y. Note that
J(VYeVYp) (VY VYy) — (o <> o) is equal to [{¥q,Ye }{¥p,Yy} when M = 2, which has also
been observed in [5] (and probably in [6] as well).

B) Codimension 2 Quantum M-branes:

M-branes are known to have special descriptions and properties when the world volume swept out
has codimension 1 (cp. [7-12]). Here I would like to propose a route to quantizing M-branes when
the codimension is 2.

The internal (Mass)? of membranes in D-dimensional Minkowski-space is known [1,13] to be,
in orthonormal light-cone gauge, equal to

D—2 o
1 I
M? = PiaPio + >8apy8apyXp XpXy- Xy (21)

i=1 a=1
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are totally antisymmetric structure constants of the Lie-algebra of "area-preserving" (i.e. unit Ja-

where

cobian) diffeomorphisms. When D =5, (21) can be written as

M? =Y adld, (22)
a=1
where 1
Ajo =1Pja+ 2 8aByEikXipXly (23)

Motivated in parts by some classical structures observed in [7], Moncrief [8] (though for the codi-
mension one case) argued that (22) may be a good take-off for quantization.
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Note that, at least formally,

[Carajp] = i(dupy+eapy)ajy (24)

holds, and that
Py (x) 1= e 3EMEapriatipiy (25)

is (formally) annihilated by the quantization of (23) as well as éa. While the exponent in (25) for
the corresponding Matrix-theory is conventionally considered to take all real values - as pointed out
by V. Moncrief (years ago, in a discussion at the Albert Einstein Institute) - it is, with the geometric
interpretation of enclosed volume at hand, in the continuum theory extremely natural [8] to restrict
to strictly negative exponents by choosing a definite orientation.

Leaving for the moment unanswered the very interesting question whether (25) (resp. its
supersymmetric analogue) may actually be Lorentz-invariant, in particular annihilated by the cru-
cial mixed generator Ml;_ (cp. [14]), let me note that by diagonalizing the real-symmetric matrix
S(= RART) appearing in

[ajocaaj-/a/] = 28jj’kga(x/yxk}/ =:2S8jaj'as (26)
1
ay=dj+ ESJLxLa
one has
T T 1 T
Ak := Rgja; = Rk, 0 + EAKRKJXJ 27

For M =1 (string in 4 Dimensions), S (hence R) are independent of x, so that
Ay =05+ N3,

and J can be taken as (j,n) while j = 1,2, n € Z —{0}. The explicit formulae for D =4 (M = 1)
are:

aj=ipj+ &X'k (28)
djo := /Ya((p)&j = dja + EjxTrapXip 29)
with
2 ,
rap = | YoYgde (30)
[aja,a;,a,] = 28jj’r()c(x’ = Sjoc.,j’a’ (31)
M? = a;aj
and a ¥y = 0 would give
lP() ~ 67%8_/j’raoc/lexxj/a’ (32)
where the exponent, —%x JSypxp = —%)Z 7A;%;, is proportional to the area enclosed by the curve.
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