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1. Introduction

In the CP1 baby Skyrme model, the target manifold S2 is parametrized by a three-dimensional
isovector scalar φ subject to the constraint |φ |2 = 1. Its Lagrangian density is of the form

L = 1
2 ∂µφ ∂

µ
φ − κ2

4 (∂µφ ×∂νφ)(∂ µ
φ ×∂

ν
φ) − V (φ), (1.1)

where the field φ is a map from the three-dimensional Minkowski space R1,2 with the metric
(ηµν) = diag(+1,−1,−1) to the two-sphere S2 of unit radius. The first term in (1.1) is the familiar
CP1 sigma model, the second term is the two-dimensional analogue of the Skyrme term and carries
a coupling κ of the dimension of length, and the last term is the potential, for which different
proposals have been made. Finiteness of the energy requires the field to approach a zero of the
potential (the ‘vacuum’ n) at spatial infinity, allowing one to compactify the static base space R2 to
S2 and to consider φ as a map S2→ S2. This gives rise to the homotopy invariant

deg[φ ] = 1
4π

∫
dxdy φ · (∂xφ ×∂yφ) ∈ Z , (1.2)

also known as the topological charge or the Skyrmion number, which is conserved.
The baby Skyrme model is a useful laboratory for studying soliton physics. It is the 2+1

dimensional analog of a model which describes the low-energy chiral dynamics of Quantum Chro-
modynamics [2], the usual Skyrme model [3]. This model has direct applications in condensed
matter physics [4], where baby Skyrmions give an effective description in quantum Hall systems.
In such systems, the dynamics are governed by the spin stiffness term, the Coulomb interaction and
the Zeeman interaction. In particular, its kinetic energy corresponds to the spin stiffness term, and
the potential (or mass) term corresponds to the Zeeman interaction, the correspondence being exact
for the static sector. The Skyrme term is analogous to the Coulomb term. All terms are needed to
prevent the collapse of topological configurations which yield to Skyrmion solutions.

In this situation, a noncommutative deformation (for reviews see [5]) may serve as a substitute
for the potential term (or Zeeman interaction), because it introduces a new length scale into the
theory, which also stabilizes solitons against collapse or spreading. We expect this to give rise to
a new class of baby Skyrmions. Indeed, it is known that Moyal-deformed field theories have a
much richer soliton spectrum than their commutative counterparts (see, e.g., [6, 7] and references
therein).

In what follows, based on our work in [1] we present a noncommutative baby Skyrme model,
without potential term, for group- or Grassmannian-valued targets, and explicitly obtain a class
of exact analytic solitonic solutions, which have no analogues in the commutative theory. This
surprising feat succeeds because certain BPS configurations of the Moyal-deformed ordinary sigma
model extremize the Skyrme part of the energy as well. We compute their static energy, discuss
their stability and evaluate the two-Skyrmion interaction potential at large distances.

2. The baby Skyrme model

The CP1 sigma model is the paradigm of a Grassmannian sigma model. A general group-valued
or Grassmannian-valued baby Skyrme model then features fields

g : R1,2 → U(n) or Gr(n,k) via (xµ)≡ (t,xi)≡ (t,x,y) 7→ g(t,x,y) , (2.1)
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which enter as variables in the action (without potential term)

S =
∫

d1+2x
{

1
2 η

µν
∂µg†

∂νg + κ2

4 [g†
∂µg , g†

∂νg ] [g†
∂

µg , g†
∂

νg ]
}
. (2.2)

Classical solutions are obtained by solving the equation of motion

∂
µ jµ = 0 for jµ = g†

∂µg + κ
2 [g†

∂
νg , [g†

∂µg , g†
∂νg ]

]
. (2.3)

Let us concentrate on static solutions, ∂tg≡ 0, which are found by extremizing the energy

E =
∫

d2x
{

1
2 ∂ig†

∂ig − κ2

4 [g†
∂ig , g†

∂ jg ] [g†
∂ig , g†

∂ jg ]
}
. (2.4)

For Grassmannian models, this simplifies since Gr(n,k) is embedded in U(n) via the constraint

g2 = 1n ⇔ g† = g ⇔ g = 1n−2P with P† = P = P2 , (2.5)

and so their energy becomes

EGr =
∫

d2x
{

2Pi Pi − 4κ
2 [Pi,Pj] [Pi,Pj]

}
, (2.6)

where the standard notation ∂iP = Pi , ∂i∂ jP = Pi j was introduced. We are looking for extrema of
the energy (2.4) which are located inside some Grassmannian. Putting δE = 0 and employing (2.5),
in particular g†∂g =−2[∂P,P] and ∂i(g†∂ig) =−2[Pii,P] , one gets

[Pii , P ] + 4κ
2 F [P] = 0 with (2.7)

F [P] = 2Pi j[Pi,P]Pj − ∂i(PjPj)[Pi,P] + Pj[Pii,P]Pj − PjPj[Pii,P] − h.c. . (2.8)

Solutions to (2.7) extremize the energy (2.6) of the Gr(n,k) model as well as (stronger) the en-
ergy (2.4) of the U(n) model. From now on we pass to complex coordinates z= x+ iy and z̄= x− iy.
At κ = 0 we connect with the ordinary sigma model. Grassmannian-valued extrema of its energy
are provided by the well known BPS projectors, defined through

0 = (1n−P)Pz̄ = Pz̄ P ⇐⇒ 0 = Pz (1n−P) = PPz . (2.9)

These relations (together with P2 = P) imply various useful identities, such as [Pz,Pz̄] = Pzz̄ and

0 = (1n−P)Pz̄z̄ = Pz̄z̄ P = Pzz (1n−P) = PPzz = Pz Pz = Pz̄ Pz̄ = [Pzz̄,P] . (2.10)

We now turn κ back on and compute the failure of the BPS projectors to extremize the baby Skyrme
energy:

1
8 F [P subject to (2.9)] = KzPz̄−Kz̄Pz−PzKz̄ +Pz̄Kz = Pz̄ Pzz Pz̄ − Pz Pz̄z̄ Pz (2.11)

with the definition K ≡ 1
4 PiPi =

1
2(PzPz̄ +Pz̄Pz) .

To get a feeling, we evaluate this expression in the CP1 model for the (rank-one) BPS projec-
tors, which are based on holomorphic functions f ,

1
8 F =

1
(1+ f f̄ )4

(
f̄ f ′2 f̄ ′′− f f̄ ′2 f ′′ f̄ 2 f ′2 f̄ ′′+ f̄ ′2 f ′′−2 f̄ f ′2 f̄ ′2

− f 2 f̄ ′2 f ′′− f ′2 f̄ ′′+2 f f ′2 f̄ ′2 f f̄ ′2 f ′′− f̄ f ′2 f̄ ′′

)
. (2.12)

This vanishes only for constant f . We conclude that the sigma-model BPS solitons never obey the
baby Skyrme equation of motion.
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3. Moyal deformation

A Moyal deformation of Euclidean R2 with coordinates (x,y) is achieved by replacing the ordinary
pointwise product of smooth functions on it with the noncommutative but associative Moyal star
product. The latter is characterized by a constant positive real parameter θ which prominently
appears in the star commutation relation between the coordinates,

x? y− y? x ≡ [x , y ]? = iθ =⇒ [z , z̄ ]? = 2θ . (3.1)

It is convenient to work with the dimensionless coordinates

a = z√
2θ

and a† = z̄√
2θ

=⇒ [a , a† ]? = 1 . (3.2)

For a concise treatment of the Moyal star product see [5].
A different realization of this Heisenberg algebra promotes the coordinates (and thus all their

functions) to noncommuting operators acting on an auxiliary Fock space H but keeps the ordinary
operator product. The Fock space is a Hilbert space with orthonormal basis states

|m〉 = 1√
m!
(a†)m |0〉 for m ∈N0 and a|0〉= 0 ,

a |m〉 =
√

m |m−1〉 , a† |m〉 =
√

m+1 |m+1〉 , N |m〉 := a†a |m〉 = m |m〉 ,
(3.3)

therewith characterizing a and a† as standard annihilation and creation operators. The star-product
and operator formulations are tightly connected through the Moyal-Weyl map: Coordinate deriva-
tives correspond to commutators with coordinate operators,

√
2θ ∂z ↔ −ad(a†) ,

√
2θ ∂z̄ ↔ ad(a) , (3.4)

and the integral over the noncommutative plane reads∫
d2x f?(x) = 2π θ TrH fop , (3.5)

where the function f? corresponds to the operator fop via the Moyal-Weyl map and the trace is
over the Fock space H . We shall work with the operator formalism but refrain from introducing
special notation indicating operators, so all objects are operator-valued if not said otherwise. The
time coordinate t of the full baby Skyrme model remains commutative. Hence, we trade the spatial
dependence of our fields with operator valuedness (in H ), and thus work with maps from the
time interval into an enlarged target space, namely U(Cn⊗H ) = U(H ⊕ . . .⊕H ) or some
Grassmannian subspace thereof.

Since the noncommutative target space is much bigger than the original one, new possibili-
ties for BPS projectors arise. In fact, the classical solutions to the deformed theory come in two
types: Firstly, nonabelian solutions are continuously (in θ ) connected to their commutative coun-
terparts (tensored with 1H ) and represent smooth deformations of it. Secondly, abelian solutions
become singular at θ→ 0 and are genuinely noncommutative. In the BPS case, the simplest abelian
projectors are of finite rank or co-rank in one copy of H . Since novel features can be expected
only in the abelian case, we focus on it from now on and choose n=1, i.e. the Moyal-deformed
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U(1) baby Skyrme model. Clearly, this theory permits abelian solutions only, since its commuta-
tive limit is free. However, it still contains an infinity of Grassmannian submodels corresponding
to Gr(P) = U(H )

U(imP)×U(kerP) for some hermitian projector P, preferably of finite rank or co-rank k.
The Moyal deformation introduces the dimensionful parameter θ into the theory, which in-

validates Derrick’s argument: scaling of spatial coordinates now relates theories with different
strengths of noncommutativity. Therefore, classical solutions at a fixed value of θ are safe against
shrinking or spreading.

4. Exact noncommutative baby Skyrmions

The equations of section 2 carry over to the deformed abelian baby Skyrme model (with replac-
ing 1n by 1H ), since on a formal level its noncommutativity resembles the non-abelianness in
the standard U(n) model. Hence, the failure of a standard noncommutative U(1) sigma-model
BPS solution, g = 1−2P obeying (2.9), to also fulfil the baby Skyrme equation of motion, is again
measured by (2.11). In our Moyal-deformed theory, this expression may vanish, and surprisingly
does so if the projector is a function of the number operator N=a†a only! In the star-product pic-
ture, this corresponds to functions only of the radial variable r=

√
zz̄, and so they are called radial

projectors. It is obvious that F [P] in (2.11) vanishes for P = P(r), but in the commutative theory
only trivial projectors can be radial. In the Fock-space basis (3.3), radial projectors are simply
diagonal.

Indeed, it is not hard to check explicitly that the BPS projector

P(k) ≡
k−1

∑
n=0
|n〉〈n| obeys P(k)

z̄ P(k)
zz P(k)

z̄ = 0 = P(k)
z P(k)

z̄z̄ P(k)
z (4.1)

as well as [P(k)
zz̄ ,P(k)] = 0 , in the sense of (3.4). Hence, F [P(k)] = 0, and the noncommutative baby

Skyrme equation of motion is satisfied. In addition, due to the translation invariance of the model,
the translates

P(k,α) ≡ eαa†−ᾱa P(k) e−αa†+ᾱa for α ∈ C and k ∈N (4.2)

also do the job. It is noteworthy that the role of deg[φ ] for the topological charge has been taken by
the rank k of the projector, which also defines a Grassmannian submanifold. Thus, for each value
of k we have found a C-family of exact noncommutative U(1)-valued baby Skyrmions, which are
of course also solitons in the Grassmannian submodel. Most basic is the k=1 family

P(1,α) = e−ᾱα eαa† |0〉〈0|eᾱa ≡ |α〉〈α| with a|α〉= α|α〉 , (4.3)

which consists of the coherent-state projectors obtained by translating the ground-state projector
P(1) = |0〉〈0|. The corresponding function (under the Moyal-Weyl map) is just a Gaussian centered
at α in the Moyal plane,

P(1,α)
? (z, z̄) = 2e−|z−α|2/θ , (4.4)

and the singular θ → 0 limit becomes apparent.
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Let us take a look at the energy of these configurations. The Grassmannian energy func-
tional (2.6) reads

EGr[P] = 16πθ TrH
{

Pz Pz̄ + 4κ
2 [Pz,Pz̄]

2} (4.5)

which for BPS projectors, due to [Pz,Pz̄] = Pzz̄ , simplifies to

EBPS[P] = 16πθ TrH
{

Pz Pz̄ + 4κ
2 P2

zz̄
}

= 8π TrH
{
−[a†,P] [a,P] + 2κ2

θ
[a†, [a,P] ]2

}
. (4.6)

It is straightforward to evaluate this on the rank-k diagonal projector of (4.1),

E[P(k)] = 8π TrH
{

k |k〉〈k| + 2κ2

θ
k2 (|k〉〈k|+ |k+1〉〈k+1|

)}
= 8π

(
k + 4κ2

θ
k2) . (4.7)

Due to translation invariance, the same result holds for P(k,α). The energy depends only on the
dimensionless parameter κ2/θ . It exceeds the Bogomol’nyi bound of 8πk by the contribution of
the Skyrme term, whose k2 dependence signals an instability of the higher-charge baby Skyrmions
against decay into those of charge one. Interpreting P(k) as describing k charge-one baby Skyrmions
sitting on top of each other, they can lower their energy by passing to a configuration of near-infinite
mutual separation, which is again a (near-exact) baby Skyrme solution. More general multi-center
BPS solitons do not solve the baby Skyrme equation of motion (2.7), since they are not rotationally
symmetric, and thus F [P] does not vanish.

5. Stability and interactions

The baby Skyrmions of the full U(1) model are not stable due to the following argument: Consider
a path in U(H ) which connects a Grassmannian solution to the vacuum,

g(s) = ei(π−s)P = 1 − (1+e−is)P with P† = P = P2 and s ∈ [0,π] . (5.1)

It interpolates between g(0) = 1−2P ∈ Gr(P) and g(π) = 1. The energy

E(s) = 4πθ TrH
{

∂zg†
∂z̄g + κ

2(∂zg†
∂z̄g−∂z̄g†

∂zg)2}
= 4πθ

{
(1+eis)(1+e−is)TrH (PzPz̄) + κ

2(1+eis)2(1+e−is)2 TrH [Pz,Pz̄]
2}

= 8π
{

k cos2 s
2 + 4κ2

θ
k2 cos4 s

2

} (5.2)

along the path is decreasing monotonically to zero, which renders any soliton of the U(1) model
unstable. This is not surprising, since the topological charge is well defined and conserved only
inside the Grassmannian submanifolds.

To determine the long-range forces between two noncommutative baby Skyrmions, we com-
pute the energy of a two-center BPS soliton, because for large separation this configuration ap-
proaches a superposition of two rank-one BPS solitons, which we have already found to be baby
Skyrmions. In the two-center configuration

P(α,β ) = 1
1−|σ |2

{
|α〉〈α| + |β 〉〈β | − σ |α〉〈β | − σ̄ |β 〉〈α|

}
with σ = 〈α|β 〉 (5.3)

the lumps are centered at positions α and β in the complex Moyal plane, and the coherent states |α〉
and |β 〉 are normalized to one. This projector obeys the BPS condition (2.9) hence [P(α,β )

zz̄ ,P(α,β )] =

6
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0 but F [P(α,β )] 6= 0 unless α−β → 0 or ∞. Employing the defining relations (a−α)|α〉 = 0 and
(a−β )|β 〉= 0 as well as σσ̄ = e−|α−β |2 , it is straightforward to compute

E[P(α,β )] = 8π TrH
{
−[a†,P(α,β )] [a,P(α,β )] + 2κ2

θ
[a†, [a,P(α,β )] ]2

}
= 8π

{
2 + 8 κ2

θ

(
1+ 1

4 r4 sinh−2 r2

2

)} (5.4)

where r = |α−β |. This expression interpolates smoothly between

E[P(r=0)] = 8π (2+ 4κ2

θ
·4) = E[P(2)]

E[P(r→∞)] = 2 ·8π (1+ 4κ2

θ
) = 2 ·E[P(1)] (5.5)

which again underscores the decay channel P(2)→ P(1)+P(1). For large separation, the interaction
potential is exponentially repulsive,

V (r) ∼ 64π
κ2

θ
r4 e−r2/2 for r→ ∞ . (5.6)

Let us conclude by pointing out some open problems for future research. It would be in-
teresting to find other exact abelian noncommutative baby Skyrmions or rule out this possibility;
determine whether P(1) has minimal energy in the rank-one Grassmannian (i.e. is stable); and work
out the scattering of two such lumps. Another promising task is to deform the full Skyrme model
(on R1,3) and to construct noncommutative Skyrmions from noncommutative instantons [8].
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