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Torsion and Burgers vector of a tube dislocation
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We consider recently discovered new exact solution of threedimensional Euclidean Einstein’s

equations corresponding to massive thin cylindrical shell(tube) withδ ′-type source. The metric

components are discontinuous functions but all ambiguous terms in Einstein’s equations cancel.

The solution describes a tube dislocation. The components of torsion tensor and Burgers vector

characterizing this defect are computed.
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1. Introduction

Recently, a new exact solution of three dimensional Euclidean Einstein’s equations was found
[1]. The metric components are discontinuous functions butsurprisingly all ambiguous terms in
Einstein’s equations cancel. This solution corresponds toδ ′-type energy-momentum tensor. The
metric has straightforward physical interpretation as describing a tube dislocation, and can be ob-
tained within the ordinary elasticity theory.

The presence of a tube dislocation in media results in changing of three dimensional space
metric. It means that the Schrödinger equation describing the motion of a quantum particle in a
space with defect should be modified not only by some potential term but also by the kinetic term.
This idea was used to describe motion of a quantum particle ina double wall nanotube [2]. We
showed that modification of a kinetic term in the Schrödingerequation by the metric for a tube
dislocation changes the spectrum of a quantum particle.

Originally, we computed curvature tensor components for a tube dislocation and showed that
all ambiguous terms (like the product of a step andδ functions) disappear in Einstein’s equations.
The net result is theδ ′-function in the right hand side. At the same time, existenceof a dislocation
leads to the appearance of nontrivial torsion in space [3–7](for review, see [8]). This fact is well
known in General Relativity which can be equivalently reformulated in a space-time with absolute
parallelism (zero curvature) but nontrivial torsion. Herewe perform this reformulation for a tube
dislocation and compute the Burgers vector which is the maincharacteristic of a dislocation.

2. Tube dislocation in the linear elasticity theory

We consider three-dimensional Euclidean spaceR
3 (infinite homogeneous and isotropic elastic

media or eather in general relativity) with Cartesian coordinatesxi ,yi , i = 1,2,3, and Euclidean
metric δi j = diag(+ + +). The basic variable in the elasticity theory is the displacement vector
field ui(x), x∈ R

3, which measures the displacement of a point in the elastic media. In the absence
of external forces, Newton’s and Hooke’s laws in the linear approximation reduce to three second
order partial differential equations which describe the equilibrium state of elastic media (see, i.e.
Ref. [9]),

(1−2σ)△ui + ∂i∂ ju
j = 0, (2.1)

whereσ is the dimensionless Poisson ratio characterizing the elastic properties of media and△ is
the Laplace operator. Raising and lowering of Latin indicesi, j, . . . is performed using the Euclidean
metric δi j and its inverseδ i j . The boundary conditions for Eq.(2.1) correspond to the physical
problem which is to be solved.

Let us pose the problem for the tube dislocation shown in Fig.1(a). This dislocation is pro-
duced as follows. We cut out the thick cylinder of media located between two parallel cylinders of
radii r1 and r2 (r1 < r2) with axis z= x3 as the axis of both cylinders, move symmetrically both
cutting surfaces one to the other, and afterwards glue them.In the equilibrium state, the gluing
surface is also the cylinder due to circular and translational symmetries of the problem of radiusr∗
which is to be found. We denote the thickness of the removed tube byl = r2− r1.
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Figure 1: Negative (a) and positive (b) tube dislocations.

In our conventions, Fig.1(a) shows the negative tube dislocation because part of the media
was removed,r1 < r2. This procedure can be inverted by addition of extra media toR

3 as shown
in Fig.1(b). In this case, we call it positive tube dislocation,r1 > r2.

This problem is naturally formulated and solved in cylindrical coordinatesr,ϕ ,z. Let us denote
the displacement field components in cylindrical coordinates byur ,uϕ ,uz. In our case,uϕ = 0,
uz = 0, due to the symmetry of the problem, and the radial displacement fieldur(r) depends only
on the radiusr, and we drop the index,ur(r) = u(r), for simplicity.

The boundary conditions for the tube dislocation are

uin|r=0 = 0, uex|r=∞ = 0, uin|r=r∗ −uex|r∗ = l ,
duin

dr

∣∣∣∣
r=r∗

=
duex

dr

∣∣∣∣
r=r∗

. (2.2)

The first three conditions are purely geometrical, and the third one means the equality of normal
elastic forces inside and outside the gluing surface in the equilibrium state. The subscripts “in” and
“ex” denote the displacement vector field inside and outsidethe gluing surface, respectively.

Our definition of the displacement vector field differs slightly from the usual one. In our
notations, the point with coordinatesyi after elastic deformation moves to the point with coordinates
xi

yi 7→ xi(y) = yi +ui(x), (2.3)

the displacement vector field being the difference between new and old coordinates,ui(x) = xi −yi

(this is usual). The difference is that we consider the components of the displacement vector field
ui(x) as functions of the final state coordinates of media pointsxi and not of the initial onesyi .
This is equivalent to the standard approach in the absence ofdislocations because both sets of
coordinatesxi andyi cover the entire Euclidean spaceR

3. If the dislocation is present, the final state
coordinatesxi cover the wholeR3 while the initial state coordinates cover only part of the Euclidean
space lying outside the thick cylinder which was removed. Therefore the final state coordinates are
preferable in the presence of dislocations. This difference can be considered as inessential in the
linear approximation but the geometric theory of defects describes large deformations along with
the small ones.
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The elasticity equations (2.1) with boundary conditions (2.2) were solved in [1]. The resulting
displacement vector field has only radial component

u(r) =





lr
2r∗

, r < r∗,

−
lr∗
2r

, r > r∗.
(2.4)

We note that the gluing surface is located exactly in the middle of two cylinders,r∗ = (r2 −

r1)/2, and the solution does not depend on the Poisson ratio. Thismeans that this defect has purely
geometric origin.

The displacement vector field (2.4) describes diffeomorphism inside and outside the gluing
surface and induces nontrivial metric

gi j (x) =
∂yk

∂xi

∂yl

∂x j δkl .

To calculate the metric in the whole spaceR
3 we drop theδ -function corresponding to the jump

of the displacement vector field (2.4) on the gluing surface.This is due to the definition of the
triad field in the geometric theory of defects [8]. The resulting metric has discontinuous angular
component

ds2 = (1−v)2dr2 +(r −u)2dϕ2+dz2, (2.5)

where

v =





l
2r∗

, r ≤ r∗,

lr∗
2r2 , r ≥ r∗.

(2.6)

Metric (2.5) differs from the formal substitution ofy = r − u(r) in the Euclidean metricds2 =

dy2 +y2dϕ2 +dz2 by the square of theδ -function in thegrr component. This procedure is a must
in the geometric theory of defects, because otherwise the Burgers vector can not be expressed as
the surface integral [8]. So, the metric componentgrr (r) = (1− v)2 of the tube dislocation is a
continuous function, and the angular componentgϕϕ = (r −u)2 has the jump across the cut.

The discontinuity of the angular metric component in (2.5) is unavoidable because the circum-
ference of the circle has a jump across the cut, and it is a geometric invariant.

The components of the metric are not differentiable functions, and hence the calculation of ge-
ometric quantities involving derivatives and multiplications is an ambiguous procedure. Therefore,
we perform all calculations as if the components were sufficiently smooth functions and see that
all ambiguous terms safely cancel in the final answer. It means that whatever regularization of the
components is applied the final answer does not depend on it.

In [1], we calculate Christoffel’s symbols and curvature tensor components. They are not
defined. At the same time, Einstein’s equations,

√
|g|

(
R̃µν −

1
2

gµνR̃

)
= −

1
2

Tµν , (2.7)

are identically satisfied with the zero right hand side except thezzcomponent,

Tzz=
4lr∗

2r∗− l
δ ′(r − r∗). (2.8)
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We see that all ambiguous terms cancel! The factor
√

|g| appears in Einstein’s equations (2.7)
becauseδ -function is not a function but a scalar density with respectto coordinate transformations.

3. Torsion and Burgers vector

The metric for a tube dislocation (2.5) does not describe thegeometry of the elastic media,
because any dislocation corresponds to nontrivial torsion[8]. Here we calculate torsion and the
Burgers vector for a tube dislocation. Translational symmetry alongz axis reduces the problem
to thex,y plane. Let us mark the old Cartesian coordinates in the undeformed media before the
dislocation is made by hat symbols{ya} = x̂, ŷ, a = 1,2. New Cartesian and polar coordinates in
the media with a tube dislocation are denoted by{xα} = x,y andr,ϕ , α = 1,2. In the inside and
outside regions old and new coordinates are related by the displacement vector field (2.4)

x̂in =
(

1− l
2r∗

)
r cosϕ , x̂ex =

(
r +

lr∗
2r

)
r cosϕ ,

ŷin =
(

1− l
2r∗

)
r sinϕ , ŷex =

(
r +

lr∗
2r

)
r sinϕ .

According to a general prescription, the induced frame fieldin these regions is given by partial
derivativeseα

a = ∂αya. Thus, we obtain

e(in)r
x̂ =

(
1− l

2r∗

)
cosϕ , e(ex)r

x̂ =
(

1− lr ∗
2r2

)
cosϕ ,

e(in)ϕ
x̂ = −

(
1− l

2r∗

)
r sinϕ , e(ex)ϕ

x̂ = −
(

r + lr ∗
2r

)
sinϕ ,

e(in)r
ŷ =

(
1− l

2r∗

)
sinϕ , e(ex)r

ŷ =
(

1− lr ∗
2r2

)
sinϕ ,

e(in)r
x̂ =

(
1− l

2r∗

)
r cosϕ , e(ex)r

ŷ =
(

r + lr ∗
2r

)
cosϕ .

(3.1)

We see that radial componentser
x̂ ander

ŷ are continuous functions at the gluing surfacer = r∗,
while angular components have the jump:

e(ex)ϕ
x̂|r=r∗ −e(in)ϕ

x̂|r=r∗ = −l sinϕ ,

e(ex)ϕ
ŷ|r=r∗ −e(in)ϕ

ŷ|r=r∗ = l cosϕ ,
(3.2)

The absence of disclinations in the media means that curvature ofSO(3)-connection vanishes.
Therefore we put the connection components to zero without loss of generality. Afterwards, the
torsion is defined entirely by the frame components

Tαβ
a = ∂αeβ

a−∂β eα
a.

For the tube dislocation they can be easily calculated. In the inside and outside regions, they are
identically zero because elastic deformations are diffeomorphisms and cannot produce nontrivial
geometry. At the gluing surfacer = r∗ the frame jumps (3.2) and produce nontrivial torsion

Trϕ
x̂ = −Tϕr

x̂ = −l sinϕδ (r − r∗),
Trϕ

ŷ = −Tϕr
ŷ = l cosϕδ (r − r∗),

proportional to theδ -function on the gluing surface.
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The torsion tensor is interpreted as the surface density of the Burgers vector in the geometric
theory of defects. The total Burgers vector for a tube dislocation is zero. To get some feeling what
happens with the Burgers vector for a tube dislocation, we compute it for a wedge shown in Fig.2.
To compute the Burgers vectorb = (bx̂,bŷ), we choose the contour of integration surrounding the
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b
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q
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Figure 2: The Burgers vector for a wedge in a tube dislocation.

infinite wedge in thex,y plane forϕ varying from−θ to θ . Its components are given by the surface
integral of the torsion tensor,

ba =
1
2

∫
dxα ∧dxβ Tαβ

a.

For the tube dislocation, we obtain

bx̂ =
∫ ∞

0
dr

∫ θ

−θ
dϕTrϕ

x̂ = −l
∫ ∞

0
drδ (r − r∗)

∫ θ

−θ
dϕ sinϕ = 0,

bŷ =
∫ ∞

0
dr

∫ θ

−θ
dϕTrϕ

ŷ = l
∫ ∞

0
drδ (r − r∗)

∫ θ

−θ
dϕ cosϕ = 2l sinθ .

(3.3)

The first integral vanishes because sinϕ is an odd function. This result is quite natural. By defini-
tion, the Burgers vector equals to the minus total jump of thedisplacement vector field along the
contour of integration [8]. In the considered case,b = b2−b1 where vectorsb1 andb2 are shown
in Fig.2. Thus the Burgers vector

b = (0,2l sinθ)

has only one nonvanishing component alongy axis because the wedge is chosen symmetrically. It
coincides with the Burgers vector obtained within the elasticity theory.

4. Conclusion

The tube dislocation is a new exact solution of three dimensional Euclidean Einstein’s equa-
tions withδ ′ source. The corresponding metric components are discontinuous but all ambiguous
terms in Einstein’s equations cancel. This solution has straightforward physical interpretation in
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the elasticity theory as the tube dislocation. Defects result in nontrivial Riemann–Cartan geometry
in the geometric theory of defects. In particular, dislocations are responsible for nontrivial torsion.
Here we computed torsion components for a tube dislocation.These calculations are nontrivial
because care must be taken in the definition of the triad field.Torsion components has physi-
cal meaning as the surface density of the Burgers vector in the geometric theory of defects. The
Burgers vector for a tube dislocation is calculated and coincides with that in the elasticity theory.

This work is partly supported by the Russian Foundation of Basic Research (Grants No. 02-
01-01084 and 09-01-12161-ofi_m), and the Program for Supporting Leading Scientific Schools
(Grant No. NSh-7675.2010.1).
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