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1. Introduction

Recently, a new exact solution of three dimensional Euahdginstein’s equations was found
[1]. The metric components are discontinuous functionssiomprisingly all ambiguous terms in
Einstein’s equations cancel. This solution correspond¥#ype energy-momentum tensor. The
metric has straightforward physical interpretation acdbig a tube dislocation, and can be ob-
tained within the ordinary elasticity theory.

The presence of a tube dislocation in media results in changf three dimensional space
metric. It means that the Schrodinger equation descrilliegtiotion of a quantum particle in a
space with defect should be modified not only by some potetetian but also by the kinetic term.
This idea was used to describe motion of a quantum particiedouble wall nanotube [2]. We
showed that modification of a kinetic term in the Schrodinggunation by the metric for a tube
dislocation changes the spectrum of a quantum patrticle.

Originally, we computed curvature tensor components faibe dislocation and showed that
all ambiguous terms (like the product of a step anidinctions) disappear in Einstein’s equations.
The net result is thé’-function in the right hand side. At the same time, existefca dislocation
leads to the appearance of nontrivial torsion in space [ger]review, see [8]). This fact is well
known in General Relativity which can be equivalently refofated in a space-time with absolute
parallelism (zero curvature) but nontrivial torsion. Here perform this reformulation for a tube
dislocation and compute the Burgers vector which is the rolaaracteristic of a dislocation.

2. Tubedidlocation in thelinear elasticity theory

We consider three-dimensional Euclidean sggeénfinite homogeneous and isotropic elastic
media or eather in general relativity) with Cartesian cowmtésx,y, i = 1,2,3, and Euclidean
metric &; = diag(++ +). The basic variable in the elasticity theory is the dispiaeet vector
field Ul (x),x € IR3, which measures the displacement of a point in the elastiianén the absence
of external forces, Newton’s and Hooke’s laws in the linggsraximation reduce to three second
order partial differential equations which describe thaildgyium state of elastic media (see, i.e.
Ref. [9]),

(1-20)Aui+ @d;ul =0, (2.1)

whereo is the dimensionless Poisson ratio characterizing theiela®operties of media and is
the Laplace operator. Raising and lowering of Latin indicgs . . is performed using the Euclidean
metric &; and its inversed. The boundary conditions for Eq.(2.1) correspond to thesjuay
problem which is to be solved.

Let us pose the problem for the tube dislocation shown inlkaj. This dislocation is pro-
duced as follows. We cut out the thick cylinder of media leddbetween two parallel cylinders of
radii ry andr, (r1 < rp) with axisz= x® as the axis of both cylinders, move symmetrically both
cutting surfaces one to the other, and afterwards glue tHanthe equilibrium state, the gluing
surface is also the cylinder due to circular and translatisgmmetries of the problem of radius
which is to be found. We denote the thickness of the removeel iyl =r, —r;.
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Figurel: Negative &) and positive If) tube dislocations.

In our conventions, Fig.&j shows the negative tube dislocation because part of theamed
was removedr; < r,. This procedure can be inverted by addition of extra medig%as shown
in Fig.1(). In this case, we call it positive tube dislocation> ro.

This problem is naturally formulated and solved in cylimdficoordinates, ¢, z. Let us denote
the displacement field components in cylindrical coordisabyu’,u? ,u% In our caseu? = 0,
u”* = 0, due to the symmetry of the problem, and the radial dispiece fieldu' (r) depends only
on the radius, and we drop the indexy (r) = u(r), for simplicity.

The boundary conditions for the tube dislocation are

dun

:I — dl'bx
T dr

dr

Uinlr=0 =0, Uex|r=w =0, Uin|r=r, — Uex (2.2)

r=r, r=r,

The first three conditions are purely geometrical, and tivd tne means the equality of normal
elastic forces inside and outside the gluing surface in gjudibrium state. The subscripts “in” and
“ex” denote the displacement vector field inside and outidayluing surface, respectively.

Our definition of the displacement vector field differs stighfrom the usual one. In our
notations, the point with coordinatgsafter elastic deformation moves to the point with coordisat
X

y =X (y) =Y +U(x), (2.3)
the displacement vector field being the difference betwesnand old coordinatesi (x) = X' —y'
(this is usual). The difference is that we consider the camepts of the displacement vector field
u'(x) as functions of the final state coordinates of media poihtand not of the initial oney'.
This is equivalent to the standard approach in the absendisloications because both sets of
coordinatet andy cover the entire Euclidean spaké. If the dislocation is present, the final state
coordinatet cover the wholé3 while the initial state coordinates cover only part of thelfiean
space lying outside the thick cylinder which was removecer€fore the final state coordinates are
preferable in the presence of dislocations. This diffeeec@n be considered as inessential in the
linear approximation but the geometric theory of defectscdbes large deformations along with
the small ones.
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The elasticity equations (2.1) with boundary condition®)2vere solved in [1]. The resulting
displacement vector field has only radial component

I
r , r<ry,
ur) = 2r, (2.4)
e -

We note that the gluing surface is located exactly in the feidd two cylinders,r, = (r, —
r1)/2, and the solution does not depend on the Poisson rationTéasis that this defect has purely
geometric origin.

The displacement vector field (2.4) describes diffeoma@phinside and outside the gluing
surface and induces nontrivial metric

oy« o
Gij (%) = a_ii(a_zli I
To calculate the metric in the whole spaké we drop thed-function corresponding to the jump
of the displacement vector field (2.4) on the gluing surfathis is due to the definition of the
triad field in the geometric theory of defects [8]. The rasgltmetric has discontinuous angular
component

ds = (1—v)?dr? + (r —u)®d¢? +dZ, (2.5)
where
9 r S r*7
v=24 2 (2.6)
_* >,
o2’ r>r

Metric (2.5) differs from the formal substitution gf=r — u(r) in the Euclidean metrids’ =

dy? +y?d¢? + dZ by the square of thé-function in theg,, component. This procedure is a must
in the geometric theory of defects, because otherwise thigeBsi vector can not be expressed as
the surface integral [8]. So, the metric compongntr) = (1—v)? of the tube dislocation is a
continuous function, and the angular comporgyy = (r — u)? has the jump across the cut.

The discontinuity of the angular metric component in (2s5)mavoidable because the circum-
ference of the circle has a jump across the cut, and it is a gegmnnvariant.

The components of the metric are not differentiable fumstj@and hence the calculation of ge-
ometric quantities involving derivatives and multiplicats is an ambiguous procedure. Therefore,
we perform all calculations as if the components were seffity smooth functions and see that
all ambiguous terms safely cancel in the final answer. It mélaat whatever regularization of the
components is applied the final answer does not depend on it.

In [1], we calculate Christoffel’'s symbols and curvatureser components. They are not
defined. At the same time, Einstein’s equations,

~ 1 ~ 1
fe] <Ruv — EguvR> = _ETHVa (2.7)

are identically satisfied with the zero right hand side ektlepzzcomponent,

ar,
T = ﬁé (r—r,). (2.8)
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We see that all ambiguous terms cancel! The fagtdg| appears in Einstein’s equations (2.7)
becaus&-function is not a function but a scalar density with resgecoordinate transformations.

3. Torsion and Burger s vector

The metric for a tube dislocation (2.5) does not describegdmmetry of the elastic media,
because any dislocation corresponds to nontrivial torfdnHere we calculate torsion and the
Burgers vector for a tube dislocation. Translational syrmynalongz axis reduces the problem
to thex,y plane. Let us mark the old Cartesian coordinates in the onthefd media before the
dislocation is made by hat symbd]g?} = X,y, a= 1,2. New Cartesian and polar coordinates in
the media with a tube dislocation are denoted{ky} = x,y andr, ¢, a = 1,2. In the inside and
outside regions old and new coordinates are related by fptadement vector field (2.4)

. . Ir.
fin = (1—2'—r*>rcos¢, Rex = (H_E) r cosg,

. . . Ir, .
Yin = (l—z'—r*>rsm¢, Vex = (H_E) rsing.

According to a general prescription, the induced frame fielthese regions is given by partial
derivativese,? = dqy2. Thus, we obtain

e(in)r)A( = (1_ zl_r*> cosg, e(ex)r;( = <l_ Izrr*z) cosg,
~ . | . ' _ | % H
e(in)q,j( =— (l— 2_u> rsing, e(ex)q)j( =— (r + %) sing, 3.1)
e(in)ry = (1- 2|_r* sing, e(eX)ry = (1- lerE) sing,
e(in)r)z = (1- 2|_r* rcosg, e(ex)ry = (r+ Ir_F) Cosp.

We see that radial componergs andeY are continuous functions at the gluing surface r.,
while angular components have the jump:

e(ex)cbﬁ’r:r* - e(in)¢)z’r:r* = —lsing,

¢ g (3.2)
€lex¢” lr=r. = &inygp’lr=r. = 1c0S9,

The absence of disclinations in the media means that cuevaf®0(3)-connection vanishes.
Therefore we put the connection components to zero withumg bf generality. Afterwards, the
torsion is defined entirely by the frame components

Tapa = daepa — dﬁeaa.

For the tube dislocation they can be easily calculated. éninikide and outside regions, they are
identically zero because elastic deformations are diffa@imisms and cannot produce nontrivial
geometry. At the gluing surfaae=r, the frame jumps (3.2) and produce nontrivial torsion

TroX = —ToX = —1singd(r —r.),
TgY = —Tod = lcospd(r—r.),

proportional to the-function on the gluing surface.
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The torsion tensor is interpreted as the surface densityeoBtrgers vector in the geometric
theory of defects. The total Burgers vector for a tube daiion is zero. To get some feeling what
happens with the Burgers vector for a tube dislocation, weptde it for a wedge shown in Fig.2.
To compute the Burgers vectbr= (b%,b7), we choose the contour of integration surrounding the

Figure2: The Burgers vector for a wedge in a tube dislocation.

infinite wedge in thex, y plane for¢ varying from—9 to 6. Its components are given by the surface
integral of the torsion tensor,

1
b — E/dx" AT, 50

For the tube dislocation, we obtain

o :/Owdr/i)ddﬁmi:_I/O‘oodré(r—r*)/idfbsmd’ =0, (3.3)

0 0 N o0 [°]
b :/ dr/9d¢Tr¢y:I/ dré(r—r*)/edq)co&p — 2'siné.
0 - 0 _

The first integral vanishes becausegiis an odd function. This result is quite natural. By defini-
tion, the Burgers vector equals to the minus total jump ofdisplacement vector field along the
contour of integration [8]. In the considered case; b, — b; where vectord; andb, are shown
in Fig.2. Thus the Burgers vector

b = (0,2lsin0)

has only one nonvanishing component algraxis because the wedge is chosen symmetrically. It
coincides with the Burgers vector obtained within the etégttheory.

4. Conclusion

The tube dislocation is a new exact solution of three dimmrai Euclidean Einstein’s equa-
tions with &’ source. The corresponding metric components are discamtinbut all ambiguous
terms in Einstein’s equations cancel. This solution heagtiforward physical interpretation in
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the elasticity theory as the tube dislocation. Defectslt@smontrivial Riemann—Cartan geometry
in the geometric theory of defects. In particular, dislamad are responsible for nontrivial torsion.
Here we computed torsion components for a tube dislocatidmese calculations are nontrivial
because care must be taken in the definition of the triad figlmtsion components has physi-
cal meaning as the surface density of the Burgers vectoreilggometric theory of defects. The
Burgers vector for a tube dislocation is calculated andadées with that in the elasticity theory.
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