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1. Introduction

At energies much below the Planck scale, gravity can be considered as a classical theory, how-
ever as energies approach the Planck scale, the quantum nature of space-time becomes apparent,
and the simple prescription, dictating that physics can be described by the sum of the Einstein-
Hilbert and the Standard Model (SM) action ceases to be valid. At such high energy scales, all
forces, including gravity, are expected to be unified so that all interactions correspond to one un-
derlying symmetry. Thus, near Planckian energies, the appropriate formulation of geometry should
be within a quantum framework, while the nature of space-time would change in such a way so that
one can recover the low energy picture of diffeomorphism and internal gauge symmetries, which
govern General Relativity (GR) and gauge groups on which the Standard Model is based, respec-
tively. A promising attempt to obtain a quantum nature of space-time has been realised within the
realm of NonCommutative Geometry (NCG).

Noncommutative Geometry [1, 2] is a beautiful and rich mathematical theory, according which
geometry can be described through the functions defined on the geometry, while the geometric
properties of spaces can be described by the properties of functions defined on the spaces. An im-
portant new feature of noncommutative geometry is the existence of inner fluctuations of the met-
ric, which correspond to the subgroup of inner automorphisms. Besides the mathematical beauty
of NCG, which by itself explains why one may want to study this theory, NCG offers a variety of
phenomenological consequences, which turn this theory into a fertile framework to address funda-
mental issues of early universe cosmology and high energy physics phenomenology.

In what follows we will follow Connes’ approach [1, 2] and consider a model of a two-sheeted
space made from the product of a continuous space by a discrete space. This model led to a geomet-
ric explanation of the Standard Model; in particular the model shows that the vacuum Expectation
Value of the Higgs field is related to the noncommutative distance between the two sheets. Within
Connes’ model of NCG, the Higgs field is conformally coupled to the Ricci curvature, while the
generalised Einstein-Hilbert action contains in addition a minimally coupled massless scalar field
related to the distance between the two sheets. Connes’ approach is based upon a spectral action
principle, stating that the bare bosonic Euclidean action for any noncommutative model based on
a product (noncommutative) space is the trace of the heat kernel associated with the square of the
noncommutative Dirac operator of the product geometry.

Within noncommutative spectral geometry, we look for a hidden structure in the functional of
gravity coupled to the SM at today’s low energy scales, and avoid an extrapolation by many orders
of magnitude to guess the appropriate structure of space-time at Planckian energy scales.

Noncommutative spectral geometry offers an elegant approach to unification, based on the
symplectic unitary group in Hilbert space, rather than on finite dimensional Lie groups. The model
offers a unification of internal symmetries with the gravitational ones. All symmetries arise as
automorphisms of the noncommutative algebra of coordinates on a product geometry. Due to
the lack of a full quantum gravity theory, which a priori should define the geometry of space-
time at Planckian energy scales, we will follow an effective theory approach and consider the
simplest case beyond commutative spaces. Thus, below but close to the Planck energy scale, space-
time will be considered as the product of a Riemanian spin manifold by a finite noncommutative
space. At higher energy scales, space-time should become noncommutative in a nontrivial way,
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while at energies above the Planck scale the whole concept of geometry may altogether become
meaningless. As a next, but highly nontrivial, step one should consider noncommutative spaces
whose limit is the almost commutative space considered here. Unfortunately, the birth of geometry
may remain an unsolved puzzle for still quite sometime.

Let me draw the attention of the reader to the fact that the noncommutative spectral geome-
try approach discussed here, goes beyond the noncommutative geometry notion employed in the
literature to implement the fuzziness of space-time by means of [xi,x j] = iθ i j, where θ i j is an anti-
symmetric, real, d×d (d is the dimension of space-time) matrix, and xi denote spatial coordinates.

2. Elements of Noncommutative Spectral Geometry

To extend the Riemanian paradigm of geometry to the notion of metric on a noncommuta-
tive space, the latter should contain the Riemanian manifold with the metric tensor (as a special
case), allow for departures from commutativity of coordinates as well as for quantum corrections
of geometry, contain spaces of complex dimension, and offer the means of expressing the Standard
Model coupled to Einstein gravity as pure gravity on a suitable geometry. Noncommutative spec-
tral geometry considers the SM as a phenomenological model, which should however determine the
geometry of space-time, so that the Maxwell-Dirac action functional leads to the SM action. The
geometrical space turns out to be the product of a continuum manifold for the space-time geometry
and a noncommutative space for the internal geometry of the SM.

Adopting the simplest generalisation beyond commutative spaces, we consider the geometry
of space-time to be described by the tensor product M ×F of a continuum compact Riemanian
manifold M and a tiny discrete finite noncommutative space F composed of just two points. It is
worth noting that while the metric dimension of F is zero, its K-theoretic dimension is equal to 6
modulo 8. Following this prescription, the Lagrangian of the SM, including mixing and Majorana
mass terms for neutrinos, minimally coupled to gravity is recovered from spectral invariants of the
inner fluctuations of the product metric on M ×F .

The noncommutative nature of the discrete space F is given by a spectral triple (A ,H ,D),
where A is an involution of operators on the finite-dimensional Hilbert space H of Euclidean
fermions, and D is a self-adjoint unbounded operator in H . For commutative geometries, the
classical notion of a real variable is described as a real-valued function on a space, described by
the corresponding algebra A of coordinates, which for noncommutative geometries is represented
as operators in a fixed Hilbert space H . Since real coordinates are represented by self-adjoint
operators, all information about a space is encoded in the algebra of coordinates A , which is re-
lated to the gauge group of local gauge transformations. By dropping the commutativity property,
the infinitesimal line element ds, employed to define geometry through the measurement of dis-
tances d(x,y) through d(x,y) = inf

∫
γ

ds where the infimum is considered over all possible paths
from point x to y, does not need to be localised. The absence of commutation of the line el-
ement with the coordinates renders possible the measurement of distances through the formula
d(x,y) = sup{| f (x)− f (y)| : f ∈A , ||D , f || ≤ 1}, where D denotes the inverse of the line element.

Assuming the algebra A to be symplectic-unitary, implies A = Ma(H)⊕Mk(C), with k = 2a
and H denoting the algebra of quaternions, which plays an important rôle here and its choice re-
mains to be explained; we assume quaternion linearity to obtain the SM. The choice k = 4 is the
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first value that produces the correct number (k2 = 16) of fermions in each of the three genera-
tions [3], with the number of generations being a physical input. If at the Large Hadron Collider
new particles are discovered, one may be able to accommodate them by considering a higher value
for k. While the choice of algebra A constitutes the main input of the theory, the choice of Hilbert
space H is irrelevant, since all separable infinite-dimensional Hilbert spaces are isomorphic. The
operator D corresponds to the inverse of the Euclidean propagator of fermions, and is given by the
Yukawa coupling matrix which encodes the masses of the elementary fermions and the Kobayashi–
Maskawa mixing parameters. We thus describe geometry by focusing on the Dirac operator D ,
instead of the metric tensor gµν , used for spaces whose coordinates commute. The fermions of the
SM provide the Hilbert space H of a spectral triple for the algebra A , while the bosons of the SM
are obtained through inner fluctuations of the Dirac operator of the product geometry.

All experimental data are of a spectral nature, thus our aim is to extract information, from our
noncommutative geometry construction, which is of a spectral nature. Luckily the appropriate tool
in noncommutative geometry has been developed; the Spectral Action Functional in noncommuta-
tive spaces is the analogous to the Fourier Transform used in spaces characterised by commutation
of the coordinates. To obtain the full Lagrangian of the SM, minimally coupled to gravity, we will
apply the Spectral Action Principle, stating that the bosonic part of the spectral action functional
depends only on the spectrum of the Dirac operator and its asymptotic expression, and for large
energy Λ is of the form Tr( f (D/Λ)), with f being a cut-off function, whose choice plays only a
small rôle; both D and Λ have physical dimensions of a mass and there is no absolute scale on
which they can be measured. The rôle of the cut-off scale Λ is equivalent to keeping only fre-
quencies smaller than the mass scale Λ. According to the spectral action principle, Tr( f (D/Λ))
is the fundamental action functional that can be used not only at the classical level but also at the
quantum level, after Wick rotation to Euclidean signature. The cut-off-dependent Euclidean action
is viewed (in the Wilsonian approach) as the bare action at mass scale Λ. The physical Lagrangian
has also a fermionic part, which has the simple linear form (1/2)〈Jψ,Dψ〉, where J is the real
structure on the spectral triple and ψ are spinors defined on the Hilbert space. To study cosmolog-
ical implications of this gravitational model one may consider only the bosonic part of the action;
the fermionic part is important to deduce particle physics phenomenology.

The formalism of spectral triples favours Euclidean rather than Lorentzian signature. The
discussion of phenomenological aspects of the theory relies on a Wick rotation to imaginary time,
into the Lorentzian signature. While sensible from the phenomenological point of view, there
exists as yet no justification on the level of the underlying theory. It is worth noting however that
the issue of Euclidean versus Lorentzian signature is not a kind of pathology only for the case
of noncommutative spectral geometry, it is for instance encountered in the nonperturbative path-
integral approach to quantum gravity.

Applying the spectral action principle to the inner fluctuations of the product M ×F of an
ordinary compact spin 4-manifold with the finite noncommutative geometry, one recovers the Stan-
dard Model action coupled to Einstein and Weyl gravity plus higher order nonrenormalisable inter-
actions suppressed by powers of the inverse of the mass scale of the theory [4]. This model provides
specific values of some of the SM parameters at unification scale (denoted by Λ). Following the
Wilsonian approach, one can then obtain physical predictions for the SM parameters by running
them down to low (present) energy scales through the Renormalisation Group Equations (RGE).
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Using heat kernel methods, the trace Tr( f (D/Λ)) can be written in terms of the geometrical
Seeley - de Witt coefficients an, which are known for any second order elliptic differential operator,
as ∑

∞
n=0 F4−nΛ4−nan , where the function F is defined such that F(D2) = f (D). Thus, the bosonic

part of the spectral action can be expanded in powers of Λ in the form [5, 6]

Tr
(

f
(

D

Λ

))
∼ ∑

k∈DimSp
fkΛ

k
∫
−|D |−k + f (0)ζD(0) +O(1) . (2.1)

The momenta fk are defined as fk ≡
∫

∞

0 f (u)uk−1du for k > 0 and f0 ≡ f (0), the noncommutative
integration is defined in terms of residues of zeta functions ζD(s) = Tr(|D |−s) at poles of the zeta
function, and the sum is over points in the dimension spectrum of the spectral triple.

Considering the Riemanian geometry to be four-dimensional, the asymptotic expansion of the
trace reads

Tr
(

f
(

D
Λ

))
∼ 2Λ

4 f4a0 +2Λ
2 f2a2 + f0a4 + · · ·+Λ

−2k f−2ka4+2k + · · · . (2.2)

The smooth even function f , which decays fast at infinity, only enters in the multiplicative factors:

f4 =
∫

∞

0
f (u)u3du , f2 =

∫
∞

0
f (u)udu ,

f0 = f (0) , f−2k = (−1)k k!
(2k)!

f (2k)(0) . (2.3)

Since f is taken as a cut-off function, its Taylor expansion at zero vanishes, thus its asymptotic
expansion, Eq. (2.2), reduces to just

Tr
(

f
(

D
Λ

))
∼ 2Λ

4 f4a0 +2Λ
2 f2a2 + f0a4 . (2.4)

The cut-off function enters through its momenta f0, f2, f4; these three additional real parame-
ters are physically related to the coupling constants at unification, the gravitational constant and the
cosmological constant. In the four-dimensional case, the term in Λ4 in the spectral action, Eq. (2.1),
gives a cosmological term, the term in Λ2 gives the Einstein-Hilbert action functional with the phys-
ical sign for the Euclidean functional integral (provided f2 > 0), and the Λ-independent term yields
the Yang-Mills action for the gauge fields corresponding to the internal degrees of freedom of the
metric. The scale-independent terms in the spectral action have conformal invariance. Note that
the arbitrary mass scale Λ can be made dynamical by introducing a scaling dilaton field.

Since the physical Lagrangian is entirely determined by the geometric input, the physical im-
plications of this approach are closely dependent on the underlying chosen geometry. The obtained
physical Lagrangian contains, in addition to the full Standard Model Lagrangian, the Einstein-
Hilbert action with a cosmological term, a topological term related to the Euler characteristic of
the space-time manifold, a conformal Weyl term and a conformal coupling of the Higgs field to
gravity. The bosonic action in Euclidean signature reads [4]

S E =
∫ ( 1

2κ2
0

R+α0CµνρσCµνρσ + γ0 + τ0R?R? +
1
4

Gi
µνGµν i +

1
4

Fα
µνFµνα

+
1
4

BµνBµν +
1
2
|DµH|2−µ

2
0 |H|2 −ξ0R|H|2 +λ0|H|4

)√
g d4x , (2.5)
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where

κ
2
0 =

12π2

96 f2Λ2− f0c
, α0 =− 3 f0

10π2 ,

γ0 =
1

π2

(
48 f4Λ

4− f2Λ
2c+

f0

4
d

)
, τ0 =

11 f0

60π2 ,

µ
2
0 = 2Λ

2 f2

f0
− e

a
, ξ0 =

1
12

, λ0 =
π2b

2 f0a2 ; (2.6)

H is a rescaling H = (
√

a f0/π)φ of the Higgs field φ to normalize the kinetic energy, and the
momentum f0 is physically related to the coupling constants at unification. Notice the absence
of quadratic terms in the curvature; there is only the term quadratic in the Weyl curvature and
the topological term R?R?. In a cosmological setting, namely for Friedmann-Lemaître-Robertson-
Walker (FLRW) geometries, the Weyl term vanishes. Notice also the term that couples gravity with
the SM, a term which should always be present when one considers gravity coupled to scalar fields.

Writing the asymptotic expansion of the spectral action, a number of geometric parameters
appeared, which describe the possible choices of Dirac operators on the finite noncommutative
space. These parameters correspond to the Yukawa parameters of the particle physics model and
the Majorana terms for the right-handed neutrinos. They are given by [4]

a = Tr
(

Y ?
(↑1)Y(↑1) +Y ?

(↓1)Y(↓1) +3
(

Y ?
(↑3)Y(↑3) +Y ?

(↓3)Y(↓3)

))
,

b = Tr
((

Y ?
(↑1)Y(↑1)

)2
+
(

Y ?
(↓1)Y(↓1)

)2
+3
(

Y ?
(↑3)Y(↑3)

)2
+3
(

Y ?
(↓3)Y(↓3)

)2
)

,

c = Tr(Y ?
RYR) ,

d = Tr
(
(Y ?

RYR)2
)

,

e = Tr
(

Y ?
RYRY ?

(↑1)Y(↑1)

)
, (2.7)

with Y(↓1),Y(↑1),Y(↓3),Y(↑3) and YR being (3× 3) matrices, with YR symmetric. The Y matrices are
used to classify the action of the Dirac operator and give the fermion and lepton masses, as well
as lepton mixing, in the asymptotic version of the spectral action. The Yukawa parameters run
with the RGE of the particle physics model. Since running towards lower energies implies that
nonperturbative effects in the spectral action cannot be any longer neglected, any results based on
the asymptotic expansion and on renormalisation group analysis can only hold for early universe
cosmology. Hence, the spectral action at the unification scale Λ offers a framework to investigate
early universe cosmological models [7, 8, 9, 10, 11, 12]. For later times, one should consider the
full spectral action, a direction which requires the development of nontrivial mathematical tools.

It is important to emphasise that the relations given in Eq. (2.6) above are tied to the scale at
which the expansion is performed. There is a priori no reason for the constraints to hold at scales
below the unification scale Λ, since they represent mere boundary conditions. One should therefore
be very careful and keep in mind that it is incorrect to consider the relations in Eq. (2.6) as functions
of the energy scale; these relations are only valid at unification scale Λ.
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3. High Energy Phenomenology of the Noncommutative Spectral Geometry

In what follows we assume that the function f is well approximated by the cut-off function
and ignore higher order terms. Normalisation of the kinetic terms implies

g2
3 f0

2π2 =
1
4

and g2
3 = g2

2 =
5
3

g2
1 ,

while

sin2
θW =

3
8

; (3.1)

a relation which was also found for SU(5) and SO(10). Assuming the big desert hypothesis, the
running of the couplings αi = g2

i /(4π) with i = 1,2,3 can then be obtained via the RGE.
The phenomenological consequences of the noncommutative spectral geometry as an approach

to unification have been discussed in Ref. [4], where the authors considered only one-loop correc-
tions, for which the β -functions are βgi = (4π)−2big3

i with i = 1,2,3 and b = (41/6,−19/6,−7). It
is worth noticing that only at one-loop order the Renormalisation Group Equations for the coupling
constants gi are uncoupled from the other Standard Model parameters.

Performing one-loop RGE for the running of the gauge couplings and the Newton constant, it
was shown [4] that these do not meet at a point, the error being within just few percent. The fact
that the predicted unification of the coupling constants does not hold exactly, implies that the big
desert hypothesis is only approximately valid and new physics are expected between unification
and present energy scales. In terms of our assumption for the cut-off function, the lack of a unique
unification energy, implies that even though the function f can be approximated by the cut-off
function, there exist small deviations. Besides this result it is however worth noting that the model
leads to the correct representations of the fermions with respect to the gauge group of the SM, the
Higgs doublet appears as part of the inner fluctuations of the metric, and Spontaneous Symmetry
Breaking mechanism arises naturally with the negative mass term without any tuning. In addition,
the see-saw mechanism is obtained, the 16 fundamental fermions are recovered, and a top quark
mass of Mtop ∼ 179 GeV is predicted.

The model predicts a heavy Higgs mass; in zeroth order approximation, it predicts a mass
of the Higgs boson approximately equal to 170 GeV, which strictly speaking is ruled out by cur-
rent experimental data. Due to this discrepancy between the NCG prediction and the experimental
data, noncommutative spectral geometry has been (rather unfairly) criticised, even though the result
quoted above depends on the value of the gauge couplings at unification scale, which is uncertain
and was obtained neglecting the nonminimal coupling between the Higgs field and the Ricci curva-
ture. I believe that one should instead draw the conclusion that noncommutative spectral geometry
as an approach to unification, even in its present (and certainly simple) version, it still led to the
correct order of magnitude for the Higgs mass, a result which was by no means obvious.

Considering an energy scale Λ∼ 1.1×1017 GeV, the standard form of the gravitational action
and the experimental value of Newton’s constant at ordinary scales imply κ

−1
0 ∼ 2.43×1018 GeV.

Finally, this approach to unification does not provide any explanation of the number of gener-
ations, nor leads to constraints on the values of the Yukawa couplings.
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4. Cosmological Consequences of the Noncommutative Spectral Geometry

The Lorentzian version of the gravitational part of the asymptotic formula for the bosonic
sector of the action obtained within noncommutative spectral geometry reads [4]

S L
grav =

∫ ( 1
2κ2

0
R+α0CµνρσCµνρσ + τ0R?R?

ξ0R|H|2
)√
−g d4x . (4.1)

This action leads to the following equations of motion [7]

Rµν − 1
2

gµνR+
1

B2 δcc

[
2Cµλνκ

;λ ;κ +CµλνκRλκ

]
= κ

2
0 δccT µν

matter ,

where we have introduced B2 ≡−(4κ2
0 α0)−1, related to the f0 moment of the cut-off function and

we have captured the nonminimal coupling between the Higgs field and the Ricci curvature scalar
in the parameter δcc, defined as δcc ≡ [1−2κ2

0 ξ0H2]−1.

In the low energy weak curvature regime, the nonminimal coupling between the background
geometry and the Higgs field can be neglected, thus δcc = 1. For a FLRW space-time, the Weyl
tensor vanishes, hence the NCG corrections to the Einstein equation vanish [7], rending difficult to
restrict B via cosmology or solar-system tests. Imposing a lower limit on B would imply an upper
limit to the moment f0, and thus restrict particle physics at unification.

One can impose an upper limit to the moment f0, by studying the energy lost to gravitational
radiation by orbiting binaries [11, 12]. Considering linear perturbations around a Minkowski back-
ground metric, the equations of motion read [12](

�−B2)�hµν = B2 16πG
c4 T µν

matter , (4.2)

where T µν

matter is taken to lowest order in hµν . Since B plays the rôle of a mass, it must be real and
positive, thus α0 must be negative for Minkowski space to be a stable vacuum of the theory.

Consider the energy lost to gravitational radiation by orbiting binaries. In the far field limit,
|r| ≈ |r−r′| (r and r′ denote the locations of observer and emitter, respectively), the spatial compo-
nents of the general first order solution for a perturbation against a Minkowski background read [12]

hik (r, t)≈ 2GB
3c4

∫ t− 1
c |r|

−∞

dt ′√
c2 (t− t ′)2−|r|2

J1

(
B
√

c2 (t− t ′)2−|r|2
)

D̈ik (t ′) ; (4.3)

Dik is the quadrupole moment, defined as Dik (t)≡ 3
c2

∫
xixkT 00(r, t) dr, and J1 a Bessel function

of the first kind. While for B→ ∞ the theory reduces to GR, for finite B gravitational radiation
contains massive and massless modes, both sourced from the quadrupole moment of the system.

For a binary pair of masses m1,m2 in circular orbit in the (xy)-plane, the rate of energy loss is

−dE

dt
≈ c2

20G
|r|2ḣi jḣi j , (4.4)

with [12]

ḣi jḣi j =
128µ2|ρ|4ω6G2B2

c8 ×
[

f 2
c

(
B|r|, 2ω

Bc

)
+ f 2

s

(
B|r|, 2ω

Bc

)]
, (4.5)
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fs (x,z) ≡
∫

∞

0

ds√
s2 + x2

J1 (s)sin
(

z
√

s2 + x2
)

, (4.6)

fc (x,z) ≡
∫

∞

0

ds√
s2 + x2

J1 (s)cos
(

z
√

s2 + x2
)

. (4.7)

The orbital frequency ω , defined in terms of the magnitude |ρ| of the separation vector between
the two bodies, is constant and equal to ω = |ρ|−3/2

√
G(m1 +m2).

The integrals in Eqs. (4.6), (4.7), exhibit a strong resonance behavior at z = 1, which corre-
sponds to the critical frequency [12]

2ωc = Bc , (4.8)

around which strong deviations from the GR results are expected. This maximum frequency results
from the natural length scale, given by B−1, at which NCG effects become dominant.

There are several binary pulsars for which the rate of change of the orbital frequency has been
well characterised, and the predictions of General Relativity agree with the data to a high accuracy.
Requiring the magnitude of deviations from GR obtained in the context of noncommutative spectral
geometry, to be less than the allowed uncertainty in the data, one constrains B, namely [11]

B > 7.55×10−13 m−1 . (4.9)

This observational constraint may seem weak, however it is comparable to existing constraints
on similar, ad hoc, additions to GR. In particular, constraints on additions to the Einstein-Hilbert
action, of the form R2 and RµνRµν , are of the order of BR2 ≥ 3.2× 10−9m−1, where BR2 is the
B parameter associated with the couplings of these terms [13]. Note also that since the strongest
constraint comes from systems with high orbital frequencies, future observations of rapidly orbiting
binaries, relatively close to the Earth, could improve it by many orders of magnitude.

Remaining in the low-energy limit, in other words neglecting the coupling between the Higgs
field and the background geometry, on may consider the corrections to the background Einstein’s
equations. It turns out that noncommutative corrections do not occur at the level of a FLRW
background, since then the modified Friedmann equation reduces to its standard form [7]. One
may have naively claimed that this was expected, arguing that in a spatially homogeneous space-
time the spatial points are equivalent and any noncommutative effects are then expected to vanish.
However, this argument does not apply here, since the noncommutativity is incorporated in the
internal manifold F and the space-time is a commutative four-dimensional manifold.

Neglecting the nonminimal coupling between the Higgs field and the Ricci curvature, any
modifications to the background equation will be apparent at leading order for anisotropic and
inhomogeneous models. Let us consider the representative example of Bianchi type-V model, for
which the space-time metric, in Cartesian coordinates, reads

gµν = diag
[
−1,{a1(t)}2e−2nz,{a2(t)}2e−2nz,{a3(t)}2] ; (4.10)

ai(t) with i = 1,2,3 arbitrary functions and n is an integer.

9
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Defining Ai (t) = lnai (t) with i = 1,2,3, the modified Friedmann equation reads [7]:

κ
2
0 T00 =

−Ȧ3
(
Ȧ1 + Ȧ2

)
−n2e−2A3

(
Ȧ1Ȧ2−3

)
+

8α0κ2
0 n2

3
e−2A3

[
5
(
Ȧ1
)2 +5

(
Ȧ2
)2−

(
Ȧ3
)2 −Ȧ1Ȧ2− Ȧ2Ȧ3− Ȧ3Ȧ1− Ä1− Ä2− Ä3 +3

]
−

4α0κ2
0

3 ∑
i

{
Ȧ1Ȧ2Ȧ3Ȧi + ȦiȦi+1

((
Ȧi− Ȧi+1

)2− ȦiȦi+1

)
+
(

Äi +
(
Ȧi
)2
)[
−Äi−

(
Ȧi
)2 +

1
2
(
Äi+1 + Äi+2

)
+

1
2

((
Ȧi+1

)2 +
(
Ȧi+2

)2
)]

+
[...

A i +3ȦiÄi−
(

Äi +
(
Ȧi
)2
)(

Ȧi− Ȧi+1− Ȧi+2
)][

2Ȧi− Ȧi+1− Ȧi+2
]}

(4.11)

with i = 1,2,3, while the t-dependence of the terms has been omitted for simplicity.
Any term containing α0 in Eq. (4.11), encodes a modification from the standard result. Let

us study Eq. (4.11) above. The correction terms can be divided into two types. The first one
contains the terms in braces in Eq. (4.11), which are fourth order in time derivatives. Thus, for the
slowly varying functions, usually considered in cosmology, these corrections can be neglected. The
second type, which appears in the third line in Eq. (4.11), occurs at the same order as the standard
Einstein-Hilbert terms. However, since this term is proportional to n2, it vanishes for homogeneous
versions of Bianchi type-V. Thus, although anisotropic cosmologies do contain corrections due to
the additional NCG terms in the action, they are typically of higher order [7]. Inhomogeneous
models do contain correction terms that appear on the same footing as the original terms.

It is worth noting that by studying the case of the Bianchi type V model, one can identify the
noncommutative geometry effects in other cases of cosmological models, for instance Bianchi I
and Kasner models. In conclusion, the corrections to Einstein’s equations can only be important
for inhomogeneous and anisotropic space-times [7].

Certainly, the coupling between the Higgs field and the background geometry cannot be ne-
glected once the energies reach the Higgs scale. The nonminimal coupling of Higgs field to curva-
ture leads to corrections to Einstein’s equations even for homogeneous and isotropic cosmological
models. To illustrate the effects of these corrections let us neglect the conformal term in Eq. (4.2),
so that the equations of motion read [7]

Rµν − 1
2

gµνR = κ
2
0

[
1

1−κ2
0 |H|2/6

]
T µν

matter , (4.12)

implying that |H| plays the rôle of an effective gravitational constant [7].
The nonminimal coupling between the Higgs field and the Ricci curvature may turn out to be

crucial in early universe cosmology [8, 10]. Such a coupling has been introduced ad hoc in the
literature, in an attempt to drive inflation through the Higgs field, and thus cure one of the main
pathologies of the inflationary paradigm, namely the origin of the inflaton field. However, the value
of the coupling constant between the scalar field and the background geometry should be dictated
by the underlying theory. Actually, even if classically the coupling between the Higgs field and the
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Ricci curvature could be set equal to zero, a nonminimal coupling will be induced once quantum
corrections in the classical field theory are considered.

In a FLRW metric, the Gravity-Higgs sector of the asymptotic expansion of the spectral action,
in Lorentzian signature, reads

SL
GH =

∫ [1−2κ2
0 ξ0H2

2κ2
0

R− 1
2
(∇H)2−V (H)

]√
−g d4x , (4.13)

where
V (H) = λ0H4−µ

2
0 H2 , (4.14)

with µ0 and λ0 subject to radiative corrections as functions of energy. For large enough values
of the Higgs field, the renormalised value of µ0 and λ0 must be calculated. More precisely, one
takes the measured values of the gauge couplings at low energy and using β -functions one evolves
them in higher energy scales, taking into account the thresholds where quark species come into the
running. Note that one should evolve simultaneously the running of the top Yukawa coupling and
the gauge couplings.

At high energies the mass term in Eq. (4.14) is sub-dominant and can be neglected. As an
explicit analysis has shown [10], for each value of the top quark mass there is a value of the Higgs
mass where the effective potential is about to develop a metastable minimum at large values of
the Higgs field and the Higgs potential is locally flattened. Calculating [10] the renormalisation of
the Higgs self-coupling up to two-loops, we have constructed an effective potential which fits the
renormalisation group improved potential around the flat region. We have found [10] a very good
analytic fit to the Higgs potential around the minimum of the potential:

V eff = λ
eff
0 (H)H4 = [a ln2(bκH)+ c]H4 , (4.15)

where the parameters a,b are related to the low energy values of top quark mass mt as [10]

a(mt) = 4.04704×10−3−4.41909×10−5
( mt

GeV

)
+1.24732×10−7

( mt

GeV

)2
,

b(mt) = exp
[
−0.979261

( mt

GeV
−172.051

)]
. (4.16)

The third parameter, c, encodes the appearance of an extremum and depends on the values for top
quark mass and Higgs mass. An extremum occurs if and only if c/a ≤ 1/16, the saturation of the
bound corresponding to a perfectly flat region. It is convenient to write c = [(1 + δ )/16]a, where
δ = 0 saturates the bound below which a local minimum is formed.

This study was done in the case of minimal coupling, while the modifications for ξ0 = 1/12
imply that flatness does not occur at δ = 0, but for fixed values of δ depending on the value of the
top quark mass. Hence, for inflation to occur via the Higgs field, the top quark mass fixes the Higgs
mass extremely accurately.

Since the region where the potential is flat is narrow, to achieve a long enough period of
quasi-exponential expansion, requires that slow-roll must be indeed very slow. Thus, the slow-
roll parameters, ε and η must be slow enough to allow sufficient number of e-folds. In addition,
the amplitude of density perturbations ∆2

R in the Cosmic Microwave Background (CMB) must
be within the window allowed from the most recent experimental data. More precisely, inflation
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predicts that at horizon crossing (denoted by stars), the amplitude of density perturbations is related
to the inflaton potential through (V∗/ε∗)

1/4 = 2
√

3π mPl ∆
1/2
R , where ε∗ ≤ 1. Its value, as measured

by WMAP7 [14], requires (V∗/ε∗)
1/4 = (2.75±0.30)×10−2 mPl, where mPl is the Planck mass.

A systematic search in the parameter space was performed in Ref. [10] using a Monte-Carlo
chain. It was found that even though slow-roll inflation can be realised – a result which does not
hold for minimally coupled Higgs field – the resulting ratio of perturbation amplitudes is too large
for any experimentally allowed values for the masses of the top quark and the Higgs boson. Hence,
Higgs driven inflation cannot be accommodated in the noncommutative spectral geometry model
studied here, a result which coincides with the conclusion known for ordinary commutative geome-
tries. It is worth noting that running of the gravitational constant and corrections by considering
the more appropriate de Sitter space-time, instead of the Minkowski geometry employed here, do
not improve substantially the realisation of a successful slow-roll inflationary era [10].

The NCG Spectral Action provides, in addition to the Higgs field, another conformally coupled
(massless) scalar field, which exhibits no coupling to the matter sector [15]. Including this field,
the cosmologically relevant terms in the Wick rotated action read

SL =
∫ { 1

2κ2 R−ξHRH2−ξσ Rσ
2− 1

2
(∇H)2− 1

2
(∇σ)2−V (H,σ)

}√
−gd4x , (4.17)

where
V (H,σ) = λHH4−µ

2
HH2 +λσ σ

4 +λHσ |H|2σ
2 . (4.18)

The constants are related to the underlying parameters as

ξH =
1
12

, ξσ =
1
12

, λH =
π2b

2 f0a2 , λσ =
π2d

f0c2 , µH = 2Λ
2 f2

f0
, λHσ =

2π2e

ac f0
. (4.19)

A careful analysis performed in Ref. [10] has shown that neither this field can lead to a successful
slow-roll inflationary era if the coupling values are conformal.

It is worth noting that the above conclusions may alter if ξ0 = 1/12 turns out not to be a generic
feature of noncommutative geometries. However, let me emphasise that there are no nonconformal
values for the coupling ξ0 for which there is a renormalization group flow towards the conformal
value as one runs the Standard Model parameters up in the energy scale. This implies that if one
expects an exactly conformal coupling for the Higgs field at some specific scale, it will be exactly
conformal at all scales.

5. Outlook and Conclusions

Noncomutative spectral geometry provides an elegant way of expressing the full Standard
Model of strong and electroweak interactions coupled to Einstein gravity, as pure gravity on a
modified space-time geometry. The paradigm of metric noncommutative geometry studied here
is of a spectral nature, an important notion in physics since all experimental data are indeed of a
spectral type. This approach is fundamentally different than any other paradigm, which imposes a
particular structure for geometrical spaces in the quantum gravity regime. Connes’ model focuses
on an almost commutative space, considering that at energies close but lower than Planckian energy
scales, space can be described by the tensor product of a continuum manifold by a discrete space.
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Within the context of noncommutative spectral geometry, gravity and matter are treated in
a similar way, leading to concrete relationships between matter and gravitational couplings. The
asymptotic expansion of the gravitational sector of the theory leads to modifications to General
Relativity which can be used to constrain the theory through astrophysical observations. Consider-
ing the energy lost by binary systems to gravitational radiation, we were able to restrict the value
of the Weyl squared coupling in the bosonic action.

Investigating Higgs driven inflation within noncomutative spectral action, we have shown that
while the Higgs potential can lead to the slow-roll conditions being satisfied once the running of
the self-coupling at two-loops is included, the constraints imposed from the CMB data make the
predictions of such a scenario incompatible with the measured value of the top quark mass. Another
massless scalar field, which naturally appears in the model, seems also not to lead to a successful
era of slow-roll inflation. However, the arbitrary mass scale Λ in the spectral action for the Dirac
operator can be made dynamical by introducing a dilaton field; this dilaton field may turn out to be
a successful inflaton candidate.

Noncommutative spectral geometry faces, to my opinion, at least two immediate research di-
rections, essential in order to deduce further cosmological and phenomenological consequences of
this paradigm. Firstly, one should compute higher order terms in the asymptotic expansion of the
spectral action functional. Note that it is very difficult to compute exactly the spectral action in
its nonperturbative form, even though some progress has been made however recently [16]. Since
the action functional Tr( f (D/Λ)) is not local – its locality is only achieved when it is replaced by
the asymptotic expansion – at least the next term in the asymptotic expansion must be computed,
in order to check the validity of the asymptotic expansion. It was recently shown [16] that for a
space-time whose spatial sections are 3-spheres S3, Wick rotated and compactified to a Euclidean
model S3×S1, the spectral action is given, for any test function, by the sum of two terms up to a re-
markably tiny correction. Let me emphasise that for any low-energy astrophysical consequence of
the noncommutative spectral geometry, a priori the full spectral action, and not only its asymptotic
form, has to be considered.

Secondly, it could be of great importance to find the running of the parameters appearing
in the spectral action, since otherwise it is impossible to extract information for low-energy as-
trophysical events. It is worth repeating that the expressions for κ0,α0,γ0,τ0,µ0,λ0 in terms of
f0, f2, f4,a,b,c,d,e and the conformal value for ξ0 are only valid at unification scale Λ. It is simply
incorrect to naively postulate that these equalities can hold at lower energy scales as such, by just
considering the parameters κ,α, · · · as functions of the energy scale.

At last but not least, one should consider less trivial noncommutative spaces whose limit is the
almost commutative space considered in the original Connes’ model discussed here.

Nevertheless, besides these necessary further developments, it is fair to conclude by stating that
noncommutative spectral geometry offers a beautiful mathematical construction which provides an
elegant explanation for the most successful particle physics model at hand.

It is a pleasure to thank the organisers of the Workshop on Non Commutative Field Theory
and Gravity, held in the beautiful island of Corfu, for inviting me to present this work during a
stimulating and interesting meeting.
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