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1. Quarkonium

In the last few years the B-factories Babar at SLAC and Belle at KEK, CLEO-III and Cleo-
c at CESR, CDF and D0 at Fermilab and BESII and BESIII at IHEP have largely operated as
quarkonium factories producing large data sample on quarkonium spectra, decays and production
with high statistics. New states, new production mechanisms, new transitions and unexpected states
of an exotic nature have been observed. The study of quarkonium in media has also undergone
crucial developments, the suppression of quarkonium production in the hot medium remaining one
of the cleanest and most relevant probe of deconfined matter. More is expected to come soon from
LHC experiments.

From the theory point of view, effective field theories (EFTs) as HQEFT, NRQCD, pNRQCD,
SCET..., for the description of quarkonium processes have been newly developed and are being
developed, providing a unifying description as well as a solid and versatile tool giving well-defined,
model independent and precise predictions [1, 2]. They rely on one hand on high order perturbative
calculations and on the other hand on lattice simulations, the recent progress in both fields having
added a lot to the theory reach.

The International Quarkonium Working Group (QWG) (www.qwg.to.infn.it) created in 2002
has supplied ad adequate platform for discussion and common researrch work between theorists and
experimentalists, producing also two large reviews of state of the art, open problems, perspective
and opportunities of quarkonium physics in 2010 and 2004 [1].

Here I will summarize some of the recent progress in theory.

2. Effective Field Theories for Quarkonium

The modern approach to quarkonium physics consists in taking advantage of the hierarchy of
non-relativistic (NR) energy scales in the system by constructing a suitable hierarchy of effective
field theories (EFTs) [2].

The energy scales are: the heavy-quark mass (hard scale), m, the typical momentum transfer
(soft scale), p ∼ mv, whose inverse sets the typical distance, r, between the heavy quark and the an-
tiquark, and the typical kinetic energy (ultrasoft scale), E ∼mv2, whose inverse sets the typical time
scale of the bound state. The heavy-quark bound-state velocity v is a small quantity v � 1 (v2 ∼ 0.1
for bb̄, v2 ∼ 0.3 for cc̄, v2 ∼ 0.01 for tt̄), the mass is a large quantity m�ΛQCD, αs(m)� 1. For en-
ergy scales close to ΛQCD, perturbation theory breaks down and one has to rely on nonperturbative
methods. Regardless of this, the nonrelativistic hierarchy of scales: m � p ∼ 1/r ∼ mv � E ∼ mv2

also persists below the ΛQCD threshold. While the hard scale is always larger than ΛQCD, differ-
ent situations may arise for the other two scales depending on the considered quarkonium system.
The soft scale, proportional to the inverse typical radius r, may be a perturbative (� ΛQCD) or a
nonperturbative scale (∼ ΛQCD) depending on the physical system. The first case is likely to hap-
pen only for the lowest charmonium and bottomonium states. We do not have direct information
on the radius of the quarkonia systems, and thus the attribution of some of the lowest bottomonia
and charmonia states to the perturbative or the nonperturbative soft regime is at the moment still
ambiguous. The ultrasoft scale may still be perturbative only in the case of tt̄ threshold states.
All quarkonium scales get entangled in a typical amplitude involving a quarkonium observable. In
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particular, quarkonium annihilation and production take place at the scale m, quarkonium binding
takes place at the scale mv, which is the typical momentum exchanged inside the bound state, while
very low-energy gluons and light quarks (also called ultrasoft degrees of freedom) live long enough
that a bound state has time to form and, therefore, are sensitive to the scale mv2. Ultrasoft gluons
are responsible for phenomena like the Lamb shift in QCD.

A hierarchy of EFTs may be constructed by systematically integrating out modes associated to
high energy scales not relevant for quarkonium. Such integration is made in a matching procedure
enforcing the equivalence between QCD and the EFT at a given order of the expansion in v. The
EFT realizes a factorization at the Lagrangian level between the high energy contributions, encoded
into the matching coefficients, and the low energy contributions, carried by the dynamical degrees
of freedom. Poincaré symmetry remains intact in a nonlinear realization at the level of the NR EFT
and imposes exact relations among the matching coefficients [3].

3. Physics at the scale m: NRQCD

At the scale m the suitable EFT is NonRelativistic QCD (NRQCD) [4], which follows from
QCD by integrating out the scale m. As a consequence, the effective Lagrangian is organized as an
expansion in 1/m and αs(m). The field of quarkonium production has seen terrific progress in the
last few years both in theory and in experiments, for a review see [1, 5].

For what concerns decays, recently, substantial progress has been made in the evaluation of
the factorization formula at order v7 [6], in the lattice evaluation of the NRQCD matrix elements
[7] and in the new, accurate data on many hadronic and electromagnetic decays [1]. The data are
clearly sensitive to NLO corrections in the Wilson coefficients and presumably also to relativistic
corrections. Improved theory predictability would entail the lattice calculation or data extraction
of the NRQCD matrix elements and perturbative resummation of large contribution in the NRQCD
matching coefficients. The new data on hadronic transitions and hadronic decays pose interesting
challenging to the theory.

Using the new CLEO data on radiative ϒ(1S) decay and the improved lattice determination of
the NRQCD matrix elements it has been possible to obtain in [8] a determination of αs at the ϒ

mass αs(Mϒ(1S)) = 0.184+0.015
−0.014 giving a value αs(Mz) = 0.1190.006

−0.005 in agreement with the world
average.

Lattice NRQCD calculations have undergone a steady development in last few years see [1, 9].

4. Physics at the scale mv and mv2: pNRQCD

At the scales mv and mv2 the suitable EFT is potential NonRelativistic QCD (pNRQCD) [10,
11], which follows from NRQCD by integrating out the scale mv.

For quarkonium states away from threshold we have now a clear effective field description,
based on perturbative and lattice computations. This is nowadays the standard description.

The soft scale mv may be larger or not than the confinement scale ΛQCD depending on the
radius of the quarkonium system. When mv2 ∼ ΛQCD, we speak about weakly-coupled pNRQCD
because the soft scale is perturbative and the matching from NRQCD to pNRQCD may be per-
formed in perturbation theory. When mv ∼ ΛQCD, we speak about strongly-coupled pNRQCD
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because the soft scale is nonperturbative and the matching from NRQCD to pNRQCD may not be
performed in perturbation theory [2].

The potential is a Wilson coefficient of the EFT. In general undergoes renormalization, de-
velops scale dependence and satisfies renormalization group equations which allow to resum large
logarithms. In this framework the QQ̄ potential, which is a fundamental object for QCD, can be
defined and systematically calculated.

In the following we will summarize some recent phenomenological applications of pNRQCD.
There are several cases for the physics at hand. In the case in which the EFT has been constructed
[11, 12, 2], i.e. for states below threshold, the work is currently going in calculating higher order
perturbative corrections in v and αs for processes of interest, resumming the logarithms in the
ratio of the scales that may be sizeable, calculating or extracting nonperturbatively low energy
correlators and extending the theory with the addictions of electromagnetic effects [13] and the
consideration of QQQ and QQq systems [14]. The issue here is precision physics and the study
of confinement. Close to threshold the full EFT has not yet been constructed and the degrees of
freedom have still to be identified [15, 1]. At finite temperature the EFT is being constructed and
the existing results hint at a new physical picture with possible application at heavy ion collisions
at LHC.

4.0.1 Potentials, spectrum, decays for quarkonia of small radius

If the quarkonium system is small, the soft scale is perturbative and the potentials can be
entirely calculated in perturbation theory [2].

Since the degrees of freedom that enter the Schrödinger description are in this case both QQ̄
color singlet and QQ̄ color octets, both singlet and octet potentials exist. The static singlet QQ̄
potential is pretty well known. The three-loop correction to the static potential is now completely
known: the fermionic contributions to the three-loop coefficient [16] first became available, and
more recently the remaining purely gluonic term has been obtained [17, 18].

The first log related to ultrasoft effects arises at three loops [19] . Such logarithm contribution
at N3LO and the single logarithm contribution at N4LO may be extracted respectively from a one-
loop and two-loop calculation in the EFT and have been calculated in [20, 21].

The perturbative series of the static potential suffers from a renormalon ambiguity (i.e. large
β0 contributions) and from large logarithmic contributions. The singlet static energy, given by the
sum of a constant, the static potential and the ultrasoft corrections, is free from ambiguities of the
perturbative series. By resumming the large logs using the renormalization group equations and
comparing it (at the NNLL) with lattice calculations of the static energy one sees that the QCD
perturbative series converges very nicely to and agrees with the lattice result in the short range (up
to 0.25 fm) and that no nonperturbative linear (“stringy”) contribution to the static potential exist
[22, 20].

In particular, the recently obtained theoretical expression [20] for the complete QCD static
energy at NNNLL precision has been used to determine r0ΛMS by comparison with available lattice
data, where r0 is the lattice scale and ΛMS is the QCD scale, obtaining r0ΛMS = 0.622+0.019

−0.015 for
the zero-flavor case. This extraction was previously performed at the NNLO level (including an
estimate at NNNLO) in [23]. The same procedure can be used to obtain a precise evaluation of the
unquenched r0ΛMS value after short distance unquenched lattice data for the QQ exist [24].
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The static octet potential is known up to two loops [25]. Relativistic corrections to the static
singlet potential have been calculated over the years and are summarized in [2].

In the case of QQq baryons, the static potential has been determined up to NNLO in perturba-
tion theory [14] and recently also on the lattice [26]. Terms suppressed by powers of 1/m and r in
the Lagrangian have been matched (mostly) at leading order and used to determine, for instance,
the expected hyperfine splitting of the ground state of these systems.

In the case of QQQ baryons, the static potential has been determined up to NNLO in pertur-
bation theory [14] and also on the lattice [27]. The transition region from a Coulomb to a linearly
raising potential is characterized in this case also by the emergence of a three-body potential ap-
parently parameterized by only one length. It has been shown that in perturbation theory a smooth
genuine three-body potential shows up at two loops.

The energy levels have been calculated at order mα5
s [29]. Decays amplitude [28, 1, 2] and

production and annihilation [30] have been calculated in perturbation theory at high order. An
effective field theory of magnetic dipole transition has been given in [13] and a description of the
ηc line shape in [31].

4.0.2 Potentials, spectra and decays for quarkonia of large radius

If the quarkonium system is large, the soft scale is nonperturbative and the potentials cannot be
entirely calculated in perturbation theory [2]. Then the potential matching coefficients are obtained
in the form of expectation values of gauge-invariant Wilson-loop operators. In this case, heavy-
light meson pairs and heavy hybrids develop a mass gap of order ΛQCD with respect to the energy
of the QQ pair, the second circumstance being apparent from lattice simulations. Thus, away from
threshold, the quarkonium singlet field S is the only low-energy dynamical degree of freedom in
the pNRQCD Lagrangian (neglecting ultrasoft corrections coming from pions and other Goldstone
bosons). The singlet potential VS(r) can be expanded in powers of the inverse of the quark mass;
static, 1/m and 1/m2 terms were calculated long ago [12]. They involve NRQCD matching coeffi-
cients (containing the contribution from the hard scale) and low-energy nonperturbative parts given
in terms of static Wilson loops and field-strength insertions in the static Wilson loop (containing
the contribution from the soft scale). Such expressions correct and generalize previous finding in
the Wilson loop approach [32] that were typically missing the high energy parts of the potentials,
encoded into the NRQCD matching coefficients and containing the dependence on the logarithms
of mQ, and some of the low energy contributions.

In this regime of pNRQCD, we recover the quark potential singlet model. However, here the
potentials are calculated in QCD by nonperturbative matching. Their evaluation requires calcula-
tions on the lattice or in QCD vacuum models [33]. Recent progress includes new, precise lattice
calculations of these potentials obtained using the Lüscher multi-level algorithm [34]. The nonper-
turbative potentials for the QQQ and QQq have been obtained in the second reference of [14] and
in [35]. Inclusive decay amplitudes have been calculated (see the last ref. in [12]) and the number
of nonperturbative correlators appears to be sizeably reduced with respect to NRQCD.

4.1 Quarkonium potential at finite T and heavy ion collisions

In the last few years years, there has been a remarkable progress in constructing EFTs for
quarkonium at finite temperature and in rigorously defining the quarkonium potential [36, 37].
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Quarkonium in a medium is characterized by different energy and momentum scales; there are the
scales of the non-relativistic bound state and there are the thermodynamical scales: the temperature
T , the inverse of the screening length of the chromoelectric interactions, i.e. the Debye mass mD

and lower scales. Up to now calculations are done in the weak coupling regime. Integrating out
sequentially the energy scales a version of pNRQCD at finite T has been obtained and the potential
has been calculated as matching coefficient of the EFT. Such potential has new and unexpected
feautures, e.g. a large imaginary contribution, that will have an important impact in phenomeno-
logical studies of quarkonium suppression at RHIC and at LHC. In particular in [38] heavy quarko-
nium energy levels and decay widths in a quark-gluon plasma, below the melting temperature at
a temperature T and screening mass mD satisfying the hierarchy mαs � πT � mα2

s � mD, have
been calculated at order mα5

s . This situation is relevant for bottomonium 1S states (ϒ(1S), ηb) at
the LHC.
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