

Measurement of the inclusive b production cross section in pp collisions at \sqrt{s} =7TeV

POSTER BY Shuang GUO
School of Physics, Peking University, China + INFN, Pisa, Italy

Introduction

This poster presents the measurement of **inclusive b production cross section** at the central mass energy of 7TeV in CMS from the *PAS BPH-10-007* and *BPH-10-009*. The measurements are based on two different methods. The first method (*PAS BPH-10-009, right side*) uses inclusive jets with secondary vertex tagging and the b-jet reconstruction efficiency, while the second method (*PAS BPH-10-009, left side*) selects a sample of events containing jets and at least one muon, where the transverse momentum of the muon with respect to the closest jet axis discriminates b events from the background. The results from data are compared with QCD Monte Carlo predictions at next-to-leading order (NLO).

In the past, Tevatron and HERA experiments have measured the b cross section using b quark decaying into muons and jets. Muons of high quality provide for a clean signal in CMS and jets reconstructed using charged tracks only have a good angular resolution and efficiency, even in the low pT region.

In QCD theory, this cross section is predicted up to the next-to-leading order (NLO) model in perturbation theory. The theoretical uncertainties are, however, sizable and measurement on the b hadron production at LHC under a higher energy is another opportunity to test these theoretical models and the QCD.

Event selection – muon+jets

Figure a-1: Distribution of the muon p^{rel} in MC.

A muon reconstructed well is selected with $p_{\mu}^{T} > 6$ GeV, $|\eta_{\mu}| < 2.1$, $|z_{0}| < 20$ cm, at least 2 pixel hits plus 12 hits in the tracker of both pixel and strip, $\chi^{2}/dof < 10$ for both the inner track fit and the global muon track fit. A jet is also required in this event. Such a kind of combination could be from b-quark, c-quark and light decay. The relative transverse muon momentum respect to the muon's closest track jet p^{rel} (shown in Fig. a-1) is defined as,

$$p_{\perp}^{rel} = \left| \vec{p}_{\mu} \times \vec{p}_{jet} \right| / \left| \vec{p}_{jet} \right|$$

The inclusive b-jet cross section is calculated as,

$$\frac{d^{2}\sigma_{b-jet}}{dp_{T} \cdot dy} = \frac{N_{tagged} f_{b} C_{smear}}{\varepsilon_{jet} \cdot \varepsilon_{b} \cdot \Delta p_{T} \cdot \Delta y \cdot L}$$

Where,

- •L is the integrated luminosity,
- • Δp_T is the size of transverse momentum bin,
- ∆y is the size of rapidity bin,
- • ε_{iet} are reconstruction efficiency of jet,
- • ε_b are reconstruction efficiency of b,
- • f_b is fraction of tagged jets containing a b-hadron,
- \mathcal{C}_{smear} is the unfolding correction,
- N_{tagged} is measured number of tagged jets per bin.

Fit the number of b-events – muon+jets

The p^{rel}_{\perp} template is used to fit the p^{rel}_{\perp} spectrum of experiment data to measure the fraction of b-signal among all events, shown in Fig. a-2. The fit also finds the scale fractor between the selected b-events in data and that in MC.

Number of b-events over the integrated luminosity (8.1nb⁻¹) and efficiencies of trigger (82%), muon reconstruction (97%) and jet (76%) achieve the inclusive b quark cross section.

Figure a-2: Muon p^{rel}_{\perp} distribution in data and the results of the maximum likelihood fit.

Conclusions

The production cross sectiones of $pp \rightarrow b + X \rightarrow mu + X'$ and b-jets are studied separately at the CMS central mass energy of 7TeV in two different methods from 8.1nb⁻¹ and 60nb⁻¹ data and compared with several theoratical model predictions, e.g. the MC@NLO using the CETQ6M PDF set and PYTHIA.

For the 8.1nb⁻¹ data, shown in Fig.c left, the data tends to be higher than the theoretical prediction and the **systematic uncertainty** is at 20% level, see Table a-1, since the binned likelihood fit is used to limit the statistical uncertainty. For the 60nb⁻¹ data, shown in Fig.c right, the measured data results, on both of the b-tagged sample purity and b-jet cross section, meets the MC@NLO and pythia theoretical prediction well and the **systematic uncertainty** is estimated to be 21% and the statistical one is 2%.

CMS Preliminary

Jet events selection and b-tagging - b tagged jets

The inclusive jet data is collected and trigger from the Minimum Bias data. Jets are reconstructed with the anti- k_T algorithm, with a clustering corn R=0.5 in Particle Flow objects.

The b jets is selected by fitting the secondary vertex, by requiring at least 3 charged particle tracks in pixel. The b-tagging efficiency is $6\%\sim60\%$ (Fig. b-1) in region of |y|<2.0 and $p_T>18GeV/c$ from MC.

b-tagged sample purity - b tagged jets

There are two complementary approaches to measure the b-tagged sample purity, one of which is to fit the invariant mass of the tracks associated to the secondary vertex (Fig. b-2, left). The data and MC prediction match with each other well, shown in Fig. b-2 right.

Tigure b 2. Distribution of the secondary vertex mass his fiert, and the obtained b tag sample parity (right).

Another method is to calculate the efficiencies and relative fractions of the signal (b-tag) and background (c and light components) from MC simulation. Then the purity could be calculated, shown in Fig. b-3.

Within this 60nb⁻¹ integrated luminosity data, the main systematic uncertainties are the b-tag efficiency (20%) and the charm mistag rate (3-4%), both of which are strongly

b-tag efficiency (20%) and the charm mistag rate (3-4%), both of which are strongly related to the statistical error from the data-based method. Not only the b-tagging efficiency, but also the b-tagged sample purity and the b-jet energy correlation are constrained by this uncertainty. Other systematic uncertainties resources are b-jet energy scale relative to inclusive jets (4-5%) and light flavor jets mistag rate($\approx 1-10\%$).

Systematic uncertainties – muon+jets

	Uncertainty
source	
Trigger	3-5%
Muon reconstruction	3%
Tracking efficiency	2%
Background template shape uncertainty	1-10%
Background composition	3-6%
Production mechanism	2-5%
Fragmentation	1-4%
Decay	3%
MC statistics	1-4%
Underlying Events	10%
Luminosity	11%
Total	16-20%

Figure c: Differential cross section of $pp \rightarrow b + X \rightarrow mu + X'$ (left) and b-jet (right), compared with theoretical caculations.