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1. Introduction

The title of my talk is both ambitious and pretentious! I hasten to state that the mandate
given to me is rather limited, namely to review the phenomenology of hadronic states discovered
recently in the mass region of the charmonia and the bottomonia. Spearheaded by the experiments
at the B factories and the Tevatron, with the experiments at the LHC as welcome new-comers, an
impressive number of new states have been reported. Generically calledX, Y andZ, these states
defy a conventional quarkonia interpretation; this certainly holds for the majority of them. Their
gross properties, such as the spin-parity assignments, masses, production mechanisms and decay
modes, have been discussed in a number of comprehensive reviews [1, 2].

There have been a number of more recent developments in the field of quarkonium spec-
troscopy and I will confine myself just to their discussion. They involve the observation of the two
charged bottomonium-like resonances by the Belle Collaboration [3] in theπ±ϒ(nS) (n = 1,2,3)

andπ±hb(mP) (m= 1,2) mass spectra that are produced in association with a single charged pion
in e+e− annihilation at energies near theϒ(5S) resonance. Herehb(mP) are the P-wave spin-singlet
bottomonia states. Calling the charged particlesZb(10610) andZb(10650), their masses and the de-
cay widths averaged over the five final states are, respectively, M[Zb(10610)] = 10608.4±2.0 MeV,
Γ[Zb(10610)] = 15.6±2.5 MeV, andM[Zb(10650)] = 10653.2±1.5 MeV, Γ[Zb(10650)] = 14.4±
3.2 MeV. The favoured quantum number assignments for both areIG(JP) = 1+(1+). This discov-
ery was preceded by the observation of thehb(1P) andhb(2P) states, also by the Belle Collabora-
tion [4] in the reactione+e− → hb(nP)π+π−, with the massesM[hb(1P)] = (9898.25±1.06+1.03

−1.07)

MeV andM[hb(1P)] = (10259.76±0.64+1.43
−1.03) MeV. These measurements yield hyperfine splitting

in the bottomonium sector, defined as the mass difference between theP-wave spin-singlet state
hb(mP) and the weighted average of the correspondingP-wave triplet states,χbJ(nP), ∆MHF(nP)≡
〈M(n3PJ)〉−M(n1P1), with ∆MHF(1P) = (1.62±1.52) MeV and∆MHF(2P) = (0.48+1.57

−1.22) MeV.
They are consistent with theoretical expectations and alsowith the hyperfine splitting measured in
the charmonium sector∆MHF = (0.14± 0.30) MeV [5], consistent with zero. Theoretically ex-
pected widths ofhb(1P) andhb(2P) are of order 100 keV [6], which are too small to be measured
by Belle.

Still on the subject ofhb(1P), the BaBar collaboration [7] has presented evidence of its pro-
duction in the decayϒ(3S) → π0hb(1P), followed by the decayhb(1P) → γηb(1S), in the distri-
bution of the recoil mass against theπ0 at the massM[hb(1P)] = (9902± 4± 1) MeV, which is
consistent with the Belle measurements [4]. The width ofhb(1P) is consistent with the experimen-
tal resolution, and the reported product branching ratio isB(ϒ(3S) → π0hb)×B(hb → γηb) =

(3.7±1.1±0.7)×10−4. In this, and also inM[hb(1P)], the first error is statistical and the second
systematic. The isospin-violating decayϒ(3S)→ π0hb(1P) is expected to have a branching fraction
of about 10−3 [8, 9], and the branching fractionB(hb(1P) → γηb(1S)) ∼ (40−50)% [6]; hence,
the measured product branching ratio is as anticipated theoretically. It is noteworthy that the decay
ϒ(3S) → hb(1P)π+π−, which is suppressed by at least an order of magnitude compared to the
decayϒ(3S) → π0hb(1P) [8], has not been observed. The observation of the singletP-state in the
charmonium sectorhc(1P) has also been reported this year by the CLEO collaboration [10] in the
processe+e− → π+π−hc(1P) at the center-of-mass energyEc.m. = 4170 MeV. In fact, CLEO pio-
neered the technique of searching for peaks in the mass spectrum recoiling against theπ0, and the
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resulting massM[hc(1P)] = (3525.27±0.17) MeV measured by this method is consistent with an
earlier measurement of thehc(1P) mass from the decayψ(2S) → π0hc [11]. The product branch-
ing ratioB(ψ(2S) → π0hc)×B(hc → γηc) = (4.19±0.32±0.45)×10−4 is in agreement with
theoretical expectations, and is also very similar to what has been reported by Babar for the corre-
spondinghb(1P) product branching ratio, quoted above. However, there is anintriguing hint in the
CLEO measurements of the cross section fore+e− → hc(1P)π+π−, which rises atEc.m. = 4260
MeV. Since this is close to the mass of theJPC = 1−− hadronY(4260), which is a candidate for the
hiddencc̄ tetraquark state, it would suggest that the mechanisme+e− →Y(4260) → hc(1P)π+π−

has something to do with the rise in the cross section. This remains to be confirmed in the next
round of precise experiments.

2. Current experimental anomalies

There is a number of anomalous features in the Belle data taken in the center-of-mass en-
ergy region near theϒ(5S) mass. The first of these was reported some three years ago [12,13]
in the processese+e− → ϒ(1S)π+π−, ϒ(2S)π+π− ,ϒ(3S)π+π−, measured in the center-of-mass
energy range between 10.83 GeV and 11.02 GeV. The enigmatic features of the Belle data are
(i) the anomalously large decay widths (or cross sections) for the mentioned final states, and
(ii) the dipion invariant mass distributions recoiling against theϒ(1S) and ϒ(2S) states, which
are at variance with similar spectra measured in the transitions involving lower mass bottomo-
nium statesϒ(nS) → ϒ(mS)π+π− (with m < n). To quantify the problem, the reported partial
widths areΓ[ϒ(1S)π+π−)] = 0.59±0.04±0.09 MeV andΓ[ϒ(2S)π+π−)] = 0.85±0.07±0.16
MeV. Compared to the corresponding partial decay widths of the lower threeϒ(nS) (n = 2,3,4)

states,Γ[ϒ(2S) → ϒ(1S)π+π−)] ∼ 6 keV, Γ[ϒ(3S) → ϒ(2S)π+π−)] ∼ 0.9 keV, andΓ[ϒ(4S) →
ϒ(1S)π+π−)] ∼ 1.9 keV, the production of theϒ(nS)π+π− in the energy region near theϒ(5S) is
larger by two to three orders of magnitude. The order keV partial widths are well-accounted for in
the QCD multipole expansion [14, 15] based essentially on the Zweig-suppressed process shown
in Fig. 1 (left-hand frame). The dipion invariant mass spectrum anticipated in the QCD multipole
expansion is shown on the example of the decayϒ(4S) → ϒ(1S)π+π− in Fig. 1 (right-hand frame)
and compared with the data taken from the Belle collaboration atϒ(4S) [16]. They are in excellent
agreement with each other. Not so, for the dipionic transitions measured in theϒ(5S) region, in
which the dipionic mass spectra are dominated by the scalar meson f0(980) and the tensor meson
f2(1270) (for theϒ(1S)π+π− mode) and by thef0(600) and f0(980) mesons (for theϒ(2S)π+π−

mode). This is illustrated in Fig. 2 for the processe+e− → ϒ(1S)π+π− which shows the distribu-
tions in theMπ+π− (left-hand frame) and in the helicity angle (cosθ distribution (right-hand frame).
The dipion mass spectrum measured near theϒ(5S) clearly shows peaks atf0(980) and f2(1270).
An interpretation of the process in terms of the production and decay of aJPC = 1−− tetraquark
state [17, 18] (histograms and the solid curves) accounts well the experimental distributions. We
will return to discuss the underlying dynamical model laterin section 4 of this report.

Not only are the cross sections fore+e− → ϒ(nS)π+π− (n = 1,2,3) near theϒ(5S) anoma-
lously large by at least two orders of magnitude, the same holds for the production of the P-
wave spin-singlet bottomonia stateshb(mP) (m= 1,2), for which the production cross sections for
e+e− → hb(1P)π+π− ande+e− → hb(2P)π+π− are also anomalously large [4]. The ratios of the
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Figure 1: Left frame: Zweig-suppressed diagram for the transitionϒ(nS) → ϒ(mS)ππ with m< n, which
forms the basis of the QCD estimates of the decay rates and distributions in heavy quarkonia dipionic tran-
sitions. Right frame: The dipion invariant mass spectrumMππ measured in the decayϒ(4S) → ϒ(1S)ππ by
the Belle collaboration together with a theoretical curve based essentially on the diagram shown in the left
frame. (From [16].)
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Figure 2: Fit results of theMπ+π− distribution (a) and the cosθ distribution (b) for e+e− → Yb →
ϒ(1S)π+π−, normalized by the measured cross section by Belle [12]. Thehistograms represent theoret-
ical fit results based on the tetraquarks hypothesis, while the crosses are the Belle data. The solid curves in
(a) show purely resonant contributions from thef0(980) and f2(1270). (From [18].)

production cross-sections in the indicated final states relative to that for thee+e− → ϒ(2S)π+π−

production are as follows [4]:

σ̃ [ϒ(1S)π+π−] = 0.638±0.065+0.037
−0.056

σ̃ [ϒ(3S)π+π−] = 0.517±0.082±0.070

σ̃ [hb(1P)π+π−] = 0.407±0.07+0.043
−0.076

σ̃ [hb(2P)π+π−] = 0.78±0.09+0.22
−0.10 (2.1)

We have already commented on the anomalous production crosssections in theϒ(ns)π+π− modes
near theϒ(5S) region. The ratios given in the last two equations above for the hb(1P)π+π− and
hb(2P)π+π− are found to be of order unity, a feature which violates theoretical expectations as
the processesϒ(5S) → hb(mP)π+π− involve heavy quark spin-flip, which are suppressed by 1/mb

in the amplitude. It is obvious that the production mechanisms of all five processes involving
ϒ(nS)π+π− (n = 1,2,3) andhb(mP)π+π− (m = 1,2) are exotic. In particular, the true mecha-
nisms at work avoid the Zweig-suppression seen in similar dipionic transitions and evade power
suppression due to the spin-flip transitions for thehb(mP)π+π− case. It is worth recalling that no
excess of the kind seen in the Belle measurements near theϒ(5S) [12, 13, 4] is seen by them or
any other experiment either at energies below or above theϒ(5S) region. Any plausible theoretical
explanation must account for all these features.
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These measurements have invoked a number of theoretical ideas. Particularly interesting is the
suggestion by Bondaret al. [19], in which the resonancesZb(10610) andZb(10650) are assumed
mostly of a ’molecular’ type due to their respective proximity with theB∗B̄ andB∗B̄∗ thresholds.
Thus, the internal dynamics of the statesZb(10610) andZb(10650) is dominated by the coupling to
meson pairsB∗B̄−BB̄∗ andB∗B̄∗, respectively. In particular, thebb̄ pair within theZb(10610) and
Zb(10650) is an equal mixture of a spin-triplet and spin-singlet with the relative phase orthogonal
between the two resonances, i.e.,

|Zb(10610)〉 =
1√
2

(
0−

bb̄
⊗1−

Q̄q
−1−

bb̄
⊗0−

Q̄q

)
,

|Zb(10650)〉 =
1√
2

(
0−

bb̄
⊗1−

Q̄q
+1−

bb̄
⊗0−

Q̄q

)
. (2.2)

Here 0− and 1− stand for the para- and ortho-states with negative parity. The assignments (2.2)
would predict that the mass differenceM[Zb(10650)]−M[Zb(10610)] should be equal to that be-
tween theB andB∗ masses. The observed mass difference of 46 MeV [4] is in neat agreement
with this argument. The spin-structure in (2.2) also suggests that the resonancesZb(10610) and
Zb(10650) have the same decay width. This again is in agreement within measurement errors with
the Belle data [4]:Γ[Zb(10610)] = 15.6±2.5 MeV andΓ[Zb(10650)] = 14.4±3.2 MeV. The max-
imal ortho-para mixing of the heavy quarks in theZb(10610) andZb(10650) resonances described
by Eq. (2.2) also implies couplings of comparable strengthsto channels with states of ortho- and
para-bottomonium, leading to the following couplings of these resonances to the channelsϒ(nS)π±

andhb(mP)π±[19]:

Ch Eπ~ϒ(nS) · (~Zb(10610)−~Zb(10650)) , Cϒ(~pπ ×~hb) · (~Zb(10610)+~Zb(10650)) , (2.3)

where~Zb(10610), ~Zb(10650) and~hb denote the polarization vectors of the corresponding spin-1
states, andEπ and~pπ are the pion energy and its three-momentum, respectively;Ch andCϒ area
priori unknown coupling constants to be determined by data. The amplitudes described by Eq. (2.3)
applied to the decaysϒ(5S) → ϒ(nS)π+π− andϒ(5S) → hb(mS)π+π− yield the right pattern of
destructive and constructive interferences seen in the Dalitz distributions of these processes [4]. All
of these arguments are plausible. Further variations on themolecular theme and predictions can be
seen in [20, 21, 22, 23].

However, the structure suggested in Eq. (2.2) is a postulatenot yet seen in decays other than
those of theϒ(5S). A particular case in point are the decays of theϒ(6S), where the available phase
space for the decaysϒ(6S) → ϒ(nS)π+π− andϒ(6S)→ hb(mP)π+π− are much larger. Hence, the
implications of Eqs. (2.2) and (2.3) should be, at least qualitatively, very similar to those discussed
in the context of the Belle data from theϒ(5S) region. This remains to be tested. In addition,
there are also some specific features of the Belle data which do not go hand-in-hand with the usual
understanding of a hadronic molecule, the closest example of which is the Deuteron. The masses
of theZb(10610) andZb(10650) are above the respective thresholds. The Deuteron mass, on the
other hand, lies below the threshold by about 2.2 MeV. Also, the decay widths of theZb(10610) and
Zb(10650) are not particularly small, as one would expect for a hadron molecule. On the contrary,
their decay widths are similar in order of magnitude as that of the ϒ(5S). This is also curious as
the other ’hadronic molecule’ discussed at length in a similar context, namely theX(3872), has
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a much smaller (by at least an order of magnitude) decay width, with the current 90% C.L. limit
beingΓ[X(3872)] < 1.2 MeV [24].

In the rest of this writeup, I will take the point of view that all the five anomalous processes
measured by Belle at energies near theϒ(5S) mass [12, 13, 4] have very little to do with the
ϒ(5S) decays. Following [17, 18, 25], I will argue here that the final statesϒ(nS)π+π− and
hb(mP)π+π− are the decay products of theJPC = 1−− tetraquarkYb(10890), which lies in mass
tantalizingly close to theϒ(5S) mass. More precise experiments are needed to tell the two apart
than is the case currently. In the context of theϒ(nS)π+π− final states, this was suggested in
[17, 18, 25] and the dynamical model was shown to be consistent with the observed cross sections.
Also, the measured dipion invariant mass distributions show the predicted scalar-and tensor-meson
resonant structure. Moreover, in the tetraquark context, it is easier to understand why the production
cross sections fore+e− →Yb(10890) → ϒ(nS)π+π−, which involves a3P→ 3Stransition, and for
e+e− →Yb(10890) → hb(mS)π+π−, which involves a3P→ 1P transition, are comparable to each
other. Detailed distributions, including the resonantZb(10610) andZb(10650) effects are still being
worked out in the tetraquark picture.

3. Spectrum of bottom diquark-antidiquark states

Much of the discussion of the tetraquark states involves theconcept of diquarks (and anti-
diquarks) as effective degrees of freedom, which will be used here to calculate the mass spec-
tra, production and decay of the tetraquark states. In particular, four-quark configurations in
the tetraquarks are assumed not to play a dominant role. Following this, the mass spectrum of
tetraquarks[bq][bq′] with q = u, d, sandc can be calculated using a Hamiltonian [26]

H = 2mQ +H(QQ)
SS +H(QQ̄)

SS +HSL+HLL, (3.1)

where:

H(QQ)
SS = 2(Kbq)3̄[(Sb ·Sq)+ (Sb̄ ·Sq̄)],

H(QQ̄)
SS = 2(Kbq̄)(Sb ·Sq̄ + Sb̄ ·Sq)+2Kbb̄(Sb ·Sb̄)+2Kqq̄(Sq ·Sq̄),

HSL = 2AQ(SQ ·L + S �
Q
·L),

HLL = BQ
LQQ̄(LQQ̄ +1)

2
. (3.2)

All diquarks, denoted here byQ are assumed to be in the color triplet(3̄), as the diquarks in the
(6) representation do not show binding [27]. HeremQ is the constituent mass of the diquark[bq],
(Kbq)3̄ is the spin-spin interaction between the quarks inside the diquarks,Kbq̄ are the couplings
ranging outside the diquark shells,AQ is the spin-orbit coupling of diquark andBQ corresponds
to the contribution of the total angular momentum of the diquark-antidiquark system to its mass.
The overall factor of 2 is used customarily in the literature. As the isospin-breaking effects are
estimated to be of order 5 - 8 MeV for the tetraquarks[bq][b̄q̄] [25, 26], they are neglected in the
mass estimates discussed below.
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The parameters involved in the above Hamiltonian (3.2) can be obtained from the known
meson and baryon masses by resorting to the constituent quark model [29]

H = ∑
i

mi +∑
i< j

2Ki j (Si ·S j), (3.3)

where the sum runs over the hadron constituents. The coefficientKi j depends on the flavour of the
constituentsi, j and on the particular colour state of the pair. The constituent quark masses and the
couplingsKi j for the colour singlet and anti-triplet states are given in [25]. To calculate the spin-
spin interaction of theQQ̄ states explicitly, one uses the non-relativistic notation[28]

∣∣SQ,SQ̄; J
〉
,

whereSQ andSQ̄ are the spin of diquark and antidiquark, respectively, andJ is the total angular
momentum. These states are then defined in terms of the directproduct of the 2× 2 matrices in
spinor space,Γα , which can be written in terms of the Pauli matrices as:

Γ0 =
σ2√

2
; Γi =

1√
2

σ2σi , (3.4)

which then lead to the definition such as
∣∣0Q,0Q̄; 0J

〉
= 1

2 (σ2)⊗ (σ2). Others can be seen in [25].
The next step is the diagonalization of the Hamiltonian (3.1) using the basis of states with

definite diquark and antidiquark spin and total angular momentum., There are two different pos-
sibilities [28]: Lowest lying[bq][b̄q̄] states

(
LQQ̄ = 0

)
and higher mass[bq][b̄q̄] states

(
LQQ̄ = 1

)
.

The[bq][b̄q̄] states
(
LQQ̄ = 0

)
can be classified in terms of the six possible states involving thegood

(spin-0) andbad(spin-1) diquarks (here,P is the parity andC the charge conjugation)
i. Two states with JPC = 0++:

∣∣0++
〉

=
∣∣0Q,0Q̄; 0J

〉
;

∣∣0++′〉 =
∣∣1Q,1Q̄; 0J

〉
. (3.5)

ii. Three states with J = 1:
∣∣1++

〉
=

1√
2

(∣∣0Q,1Q̄; 1J
〉
+
∣∣1Q,0Q̄; 1J

〉)
;

∣∣1+−〉 =
1√
2

(∣∣0Q,1Q̄; 1J
〉
−
∣∣1Q,0Q̄; 1J

〉)
;

∣∣1+−′〉 =
∣∣1Q,1Q̄; 1J

〉
. (3.6)

All these states have positive parity as both thegoodandbad diquarks have positive parity and
LQQ̄ = 0. The difference is in the charge conjugation quantum number, the state|1++〉 is even
under charge conjugation, whereas|1+−〉 and|1+−′〉 are odd.

iii. One state with JPC = 2++:
∣∣2++

〉
=
∣∣1Q,1Q̄; 2J

〉
. (3.7)

Keeping in view that forLQQ̄ = 0 there is no spin-orbit and purely orbital term, the Hamiltonian
(3.1) takes the form

H = 2mQ +2(Kbq)3̄[(Sb ·Sq)+ (Sb̄ ·Sq̄)]+2Kqq̄(Sq ·Sq̄)

+2(Kbq̄)(Sb ·Sq̄+ Sb̄ ·Sq)+2Kbb̄(Sb ·Sb̄). (3.8)

7
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The diagonalisation of the Hamiltonian (3.8) with the states defined above gives the eigenvalues
which are needed to estimate the masses of these states. For the 1++ and 2++ states the Hamiltonian
is diagonal with the eigenvalues [28]

M
(
1++

)
= 2mQ− (Kbq)3̄ +

1
2
Kqq̄−Kbq̄+

1
2
Kbb̄, (3.9)

M
(
2++

)
= 2m[bq] +(Kbq)3̄ +

1
2
Kqq̄ +Kbq̄+

1
2
Kbb̄. (3.10)

Mass of the constituent diquark can be estimated in one of twoways: We take the Belle data [12] as
input and identify theYb(10890) with the lightest of the 1−− states,Y[bq], yielding a diquark mass
m[bq] = 5.251 GeV. This procedure is analogous to what was done in [28],in which the mass of the
diquark[cq] was fixed by using the mass ofX(3872) as input, yieldingm[cq] = 1.933 GeV. Instead,
if we use this determination ofm[cq] and use the formulam[bq] = m[cq] +(mb−mc), which has the
virtue that the mass differencemc−mb is well determined, we getm[bq] = 5.267 GeV, yielding a
difference of 16 MeV. This can be taken as an estimate of the theoretical error onm[bq], which then
yields an uncertainty of about 30 MeV in the estimates of the tetraquark masses from this source
alone. For the corresponding 0++ and 1+− tetraquark states, there are two states each, and hence
the Hamiltonian is not diagonal. After diagonalising the 2×2 matrices, the masses of these states
are obtained.

We now discuss orbital excitations withLQQ̄ = 1 having bothgoodandbad diquarks. Con-
centrating on the 1−− multiplet, we recall that there are eight tetraquark states[bq][b̄q̄] (q = u,d),
and the lightest isospin doublet is:

M(1)
Y[bq]

(
SQ = 0, SQ̄ = 0, SQQ̄ = 0, LQQ̄ = 1

)
= m[bq] + λ1+BQ, (3.11)

and the next in mass is:M(2)
Y[bq]

(
SQ = 1, SQ̄ = 0, SQQ̄ = 1, LQQ̄ = 1

)
= 2m[bq] +∆+λ2−2AQ +BQ,

and so on. Values ofλi(i = 1,2,3), AQ andBQ are estimated in [25]. We identify the stateYb(10890)
with M(1)

Y[bq]
(in fact there are two of them, which differ in mass from each other by about 5 - 8 MeV,

including isospin-breaking). This does not fix the quantity∆, which is the mass difference of the
goodand thebaddiquarks, i.e.∆ = mQ(SQ = 1)−mQ(SQ = 0). Following Jaffe and Wilczek [27],
the value of∆ for diquark[bq] is estimated as∆ = 202 MeV forq = u, d, s andc quarks. This is
another source of potential uncertainty in estimating the tetraquark masses. The mass spectrum for
the tetraquark states[bq][b̄q̄] for q = u,d with JPC = 0++,1++,1+−,1−− and 2++ states is plotted
in Fig. 3 in the isospin-symmetry limit. It is difficult to quote a theoretical error on the masses
shown, with±50 MeV presumably a good guess. Other estimates of the tetraquark mass spectra in
the charm and bottom quark sectors can be seen in [31, 32, 33].

3.1 Estimates of the charged JP = 1+ tetraquark states

In the tetraquark picture, one also anticipates a large number of charged states whose mass
spectrum can be calculated in an analogous fashion as for their neutral counterparts just discussed.
We would like to propose that the two chargedJP = 1+ statesZb(10610) andZb(10650) observed
recently by the Belle Collaboration [3], and interpreted bythem as the charged bottomonium states
produced in the processϒ(5S) → Z±

b (10610) + π∓ and ϒ(5S) → Z±
b (10650) + π∓, are indeed

charged tetraquark states with the quark contentZ+
b = [bu][b̄d̄] for the positively charged state (its

8
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charge conjugate beingZ−
b = [b̄ū][bd]). For the present discussion, they are produced in the decays

of theJPC = 1−− tetraquarkYb(10890). According to this interpretation, the decay chains involve
Yb(10890) → ((Z±

b (10610),Z±
b (10650)+ π∓ → ϒ(ns)π+π−. A detailed dynamical model is un-

der development with the aim of understanding the decay distributions in the kinematic variables
available in these decays.

We have estimated the masses of the isospin partners ofZb(10610) andZb(10650), the two
neutralJ = 1 tetraquark states, denoted as|1+−〉 and|1+−′〉. The 2×2 non-diagonal mass matrix
for the neutralJPC = 1+− states was, however, calculated numerically for∆ = 0. If we ignore the
isospin-breaking effects in the tetraquark masses, which are small, then the charged counterparts
have the massesM[Zb(10610)] = 10.386 GeV andM[Zb(10650)] = 10.527 GeV, given in Fig. 3.
As Zb(10610) involves onegoodand onebaddiquark andZb(10650) involves twobaddiquarks,
including the∆-dependent term, the non-diagonal 2×2 mass matrix gets modified to the following
form

M(1+−) = 2mQ +
3
2

∆− κqq̄ + κbb̄

2
+

(
−∆

2 − (κbq)3̄ + κbq̄ κqq̄−κbb̄

κqq̄−κbb̄
∆
2 +(κbq)3̄−κbq̄

)
. (3.12)

The two eigenvalues can be written asE =±
√

x2 +y2, with x= ∆
2 +(κbq)3̄−κbq̄ andy= κqq̄−κbb̄,

yielding

M[Zb(10650)] = 2mQ +
3
2

∆− κqq̄ + κbb̄

2
+

√
(
∆
2

+(κbq)3̄−κbq̄)2 +(κqq̄−κbb̄)
2 , (3.13)

M[Zb(10610)] = 2mQ +
3
2

∆− κqq̄ + κbb̄

2
−
√

(
∆
2

+(κbq)3̄−κbq̄)2 +(κqq̄−κbb̄)
2 . (3.14)

Using the default values of the parameters [25]

mQ = 5.251 GeV, (κqq̄)0 = 318 MeV, (κbb̄)0 = 36 MeV, (κbq̄)0 = 23 MeV, (κbq)3 = 6 MeV

(3.15)

we have now the following predictions for the two charged tetraquark masses
M[Zb(10610)] = 10.637 GeV; M[Zb(10650)] = 10.884 GeV, with ∆ = 202 MeV . (3.16)

These estimates are to be compared with the masses of theJP = 1+ statesZb(10610) andZb(10650)
reported by the Belle Collaboration [3]M[Zb(10610)] = (10608±2.0) MeV andM[Zb(10650)] =

(10653.2±1.5) MeV. They are in the right ball-park, but miss the measurements by approximately
30 MeV and 230 MeV, respectively. More importantly, the massdifference between the two states
has been measured precisely [3]M[Zb(10650)]−M[Zb(10610)] ≃ 45 MeV. The expression for this
mass difference using the Hamiltonian (3.2) is:

M[Zb(10650)]−M[Zb(10610)] = 2

√
(
∆
2

+(κbq)3̄−κbq̄)2 +(κqq̄−κbb̄)
2 . (3.17)

The smallest value for the mass difference (140 MeV) is obtained for∆ = 0, which goes up to 247
MeV for ∆ = 202MeV. Both are larger than the measurements. Thus, the Belle data suggests that
the Hamiltonian used here has to be augmented with an additional contribution. As the masses of
the observed statesZb(10610) andZb(10650) are rather close to the thresholdsM(B)+M(B∗) and
2M(B∗), respectively, this suggests that the threshold effects may impact on the masses and mass
differences presented here.

9
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10 504H1++L
10 520H2++L
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11 133H1--L
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����
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Figure 3: Tetraquark mass spectrum with the valence quark content[bq][b̄q̄] with q= u,d, assuming isospin
symmetry. The value 10890 is an input for the lowestJPC = 1−− tetraquark stateY[bq]. All masses are given
in MeV. (From [25].)

4. Tetraquark-based analysis of the processes e+e− → ϒ(1S)(π+π−,K+K−,ηπ0)

The cross sections and final state distributions for the processese+e−→ϒ(1S)(π+π−,K+K−,ηπ0)

near theϒ(5S) have been presented in the tetraquark picture in [18] improving the results on the
processe+e− → ϒ(1S)π+π published earlier [17]. The distributions for the processe+e− →
ϒ(2S)π+π calculated in [17] had a computational error, which has beencorrected in the mean-
while (see the Erratum in [17]). These analyses are briefly reviewed in this section. Concentrating
on the processese+e− → ϒ(1S)(π+π−,K+K−,ηπ0), there are essentially three important parts of
the amplitude to be calculated consisting of the following:

(i) Production mechanism of theJPC = 1−− vector tetraquarks ine+e− annihilation. To that
end, we derive the equivalent of the Van-Royen-Weiskopf formula for the leptonic decay widths
of the tetraquark statesY[bu] andY[bd] made up of a diquark and antidiquark, based on the diagram
shown in Fig. 4 (left-hand frame).

Γ(Y[bu/bd] → e+e−) =
24α2|Q[bu/bd]|2

m4
Yb

κ2
∣∣∣R(1)

11 (0)
∣∣∣
2

. (4.1)

Here,Q[bu] = 1/3 andQ[bd] = −2/3 are the electric charges of the constituent diquarks of theY[bu]

andY[bd], α is the fine-structure constant, the parameterκ takes into account differing sizes of the

tetraquarks compared to the standard bottomonia, withκ < 1 anticipated, and|R(1)
11 (0)|2 = 2.067

GeV5 [34] is the square of the derivative of the radial wave function for χb(1P) taken at the origin.
Hence, the leptonic widths of the tetraquark states are estimated as

Γ(Y[bd] → e+e−) = 4Γ(Y[bu] → e+e−) ≈ 83κ2 eV, (4.2)

which are substantially smaller than the leptonic width of the ϒ(5S) [5]. This is the reason why
the statesY[bd] andY[bu] are not easily discernible in theRb-scan. Between the two,Y[bd] production

10
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dominates and should be searched for in dedicated experiments. However, as the decaysϒ(5S) →
ϒ(nS)π+π− are Zweig-suppressed in the conventional Quarkonia descriptions, and hence have
small branching ratios, the signal-to-background is much better for the discovery of theYb(10890)
in the statesϒ(nS)π+π−. These, in fact, are the discovery channels of theYb(10890) [13].

(ii) The decay amplitudes forYb(10890) → ϒ(1S)(π+π−,K+K−,ηπ0) have non-resonant
(continuum) contributions, as depicted in Fig. 4 (middle frame). They are parametrised in terms of
two a priori unknown constantsA andB , following [14]:

M
1C
0 =

2A
fP fP′

(k1 ·k2)+
B

fP fP′

3(q0)2k0
1k0

2−|q|2|k|2
3s

,

M
2C
0 = − B

fP fP′

|q|2|k|2
s

, (4.3)

where the subscript 0 denotes theI = 0 part of the amplitudes, the superscripts 1C and 2C cor-
respond to theS- andD-wave continuum contributions, respectively,fP(′) is the decay constant of
P(′), and|q|, k0

1 andk0
2 are the magnitude of the three momentum ofYb and the energies ofP and

P′ in the PP′ rest frame, respectively. Using SU(3) symmetry results in the relations involving
the variousI = 0 andI = 1 amplitudes:M 1C,2C

0 (ϒ(1S)K+K−) = (
√

3/2)M 1C,2C
0 (ϒ(1S)π+π−),

M
1C,2C
1 (ϒ(1S)K+K−)= M

1C,2C
0 (ϒ(1S)K+K−) andM

1C,2C
1 (ϒ(1S)ηπ0)=

√
2M

1C,2C
1 (ϒ(1S)K+K−).

We note that, in general, there is a third constant also present in the non-resonant amplitudes, char-
acterising the term depending on the polarisation of theYb. However, being suppressed by 1/mb,
this is ignored.

(iii) The resonant contributions, shown in the right-hand frame of Fig. 4, are expressed by the
Breit-Wigner formula:

M
R
I =

gRPP′ gYI
bϒ(1S)Rge+e−Y0

b

M2
PP′ −m2

R+ imRΓR
eiϕR, (4.4)

whereI = 0 for R= σ , f0 and f2, andI = 1 for R= a0
0. The couplings for the scalar resonances

Sare defined through the LagrangianL = gSPP′(∂µP)(∂ µP′)S+gYbϒ(1S)SYbµ ϒµS, while those for
the f2 are defined viaL = 2gf2PP′(∂µP)(∂νP′) f µν

2 +gYbϒ(1S) f2Ybµϒν f µν
2 . The couplingsgRPP′ and

gYI
bϒ(1S)R have mass dimensions−1 and 1, respectively. For theσ , f0 anda0

0, we adopt the Flatté
model [35] and the details can be seen in [18].

With this input, a simultaneous fit to the binnedϒ(1S)π+π− data for theMπ+π− and cosθ
distributions measured by Belle at

√
s= 10.87 GeV [12] were undertaken. Normalizing the dis-

tributions by the measured cross section:dσ̃π+π−/dMππ and dσ̃π+π−/dcosθ , where σ̃π+π− ≡
σϒ(1S)π+π−/σBelle

ϒ(1S)π+π− with σBelle
ϒ(1S)π+π− = 1.61± 0.16 pb [12], the results are shown in Fig. 2

(histograms) and provide a good description of both the dipion mass spectrum and the angular
distribution.

The normalizedMK+K− and Mηπ0 distributions are shown in Fig. 5 (a) and Fig. 5 (b), re-
spectively. In these figures, the dotted (solid) curves showthe dimeson invariant mass spectra
from the resonant (total) contribution. Since these spectra are dominated by the scalarsf0 + a0

0

anda0
0, respectively, there is a strong correlation between the two cross sections. This is shown

in Fig. 5 (c), where the normalized cross sectionsσ̃K+K− and σ̃ηπ0 are plotted resulting from
the fits (dotted points) which all satisfyχ2/d.o.f. < 1.6 [18]. The current Belle measurement
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Yb

P

P ′

Υ(nS)
e+

e−

Yb

P

P ′

Υ(nS)
e+

e− R
q

Figure 4: Left frame: Van Royen-Weiskopf Diagram for the production of a JPC = 1−− tetraquarkYb

with the quark content[bu][b̄ū] in the processe+e− → γ∗ →Yb. Middle frame: Continuum contribution in
the processe+e− → Yb → ϒ(nS)PP′. Right frame: Resonance contribution in the processe+e− → Yb →
ϒ(nS)PP′. (Figures based on [18].)
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Figure 5: Predictions (a) of theMK+K− distribution fore+e− →Yb → ϒ(1S)K+K−, (b) of theMηπ0 distri-
bution fore+e− →Yb → ϒ(1S)ηπ0 and (c) of the correlation between the cross sections ofϒ(1S)K+K− and
ϒ(1S)ηπ0, normalized by the measured cross section for theϒ(1S)π+π− mode. In (a) and (b), the dotted
(solid) curves show the dimeson invariant mass spectra fromthe resonant (total) contribution. In (c), the red
dots represent predictions from the fit solutions satisfying χ2/d.o.f. < 1.6. The shaded (green) band shows
the current Belle measurementσ̃K+K− = 0.11+0.04

−0.03 [12]. (From [18].)

σ̃K+K− = 0.11+0.04
−0.03 [12] is shown as a shaded (green) band on this figure. The tetraquark model [18]

is in agreement with the Belle measurement, and prediction 1.0. σ̃ηπ0 . 2.0. will be further tested
as and when the cross sectionσ̃ηπ0 is measured. Another important test of the tetraquark model
is [12]

σϒ(1S)K+K−

σϒ(1S)K0K̄0
=

Q2
[bu]

Q2
[bd]

=
1
4

. (4.5)

This remains to be tested. Finally, the corrected analysis [17] of the dipion invariant mass spectrum
and the helicity angle distribution (in cosθ ) for the processYb(10890) → ϒ(2S)π+π− are shown
in Fig. 6, in which the normalization is given by the measuredpartial decay widthΓ[Yb(10890) →
ϒ(2S)π+π−] = 0.85±0.7±0.16 MeV [13]. The dipion invariant mass spectrum is well accounted
for also in this process (χ2/d.o.f. = 12.6/7), but not the the angular distributiondΓ/dcosθ . These
distributions are being reevaluated taking into account the resonancesZb(10610) andZb(10650).

As a tentative summary of the tetraquark interpretation of the Belle data one+e−→ (ϒ(nS)π+π−

ande+e− → hb(mP)π+π− is that the existing analysis are encouraging and there exists aprima fa-
cie case of its validity. However, the missing contributions from the charged tetraquarks in the
analysis of thee+e− → (ϒ(nS)π+π− data have to be incorporated and the fits of thee+e− →
hb(mP)π+π− data have to be undertaken to get a definitive answer.

I would like to thank Robert Fleischer and the organisers of the Beauty 2011 conference for a
very exciting meeting in Amsterdam. I also thank Christian Hambrock, Satoshi Mishima and Wei
Wang for their help in preparing this talk and helpful discussions.
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Figure 6: Dipion invariant mass(mππ) distribution (left-handed frame) and the cosθ distribution (right-
handed frame) measured by the Belle collaboration for the final stateϒ(2S)π+π− [12] and the corresponding
theoretical distributions (histograms) based on the tetraquark interpretation of theYB(10890). (From [17].)
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