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the help of high precision experiments in which flavour violating processes will play a prominent
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to what Antoni van Leeuvenhoek saw by discovering bacteria in 1676? The basic question for
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1. Overture

The year 1676 was a very important year for the humanity. In this year Antoni van Leeuven-
hoek (1632-1723) discovered the empire of bacteria. He called these small creaturesanimalcula
(small animals). This discovery was a mile stone in our civilization for at least two reasons:

• He discovered invisible to us creatures which over thousands of years were systematcally
killing the humans, often responsible for millions of deathin one year. While Antoni van
Leeuvanhoek did not know that bacteria could be dangerous for humans, his followers like
L. Pasteur (1822-1895), Robert Koch (1843-1910) and otheranimalcula huntersnot only
realized the danger coming from these tiny creatures but also developed weapons against
this empire.

• He was the first human who looked at short distance scales invisible to us, discovering
thereby a newunderground world. At that time researchers looked mainly at large distances,
discovering new planets and finding laws, like Kepler laws, that Izaak Newton was able to
derive from his mechanics.

While van Leeuvanhoek could reach the resolution down to roughly 10−6m, over the last 335
years this resolution could be improved by twelve orders of magnitude. On the way down to short-
est distance scales scientists discoverednanouniverse(10−9m), femtouniverse(10−15m) relevant
for nuclear particle physics and low energy elementary particle physics and finallyattouniverse
(10−18m) that is the territory of contemporary high energy elementary particle physics.

In this decade we will be able to improve the resolution of theshort distance scales by at least
an order of magnitude, extending the picture of fundamentalphysics down to scales 5·10−20m with
the help of the LHC. Further resolution down to scales as short as 10−21m (zeptouniverse) should
be possible with the help of high precision experiments in which flavour violating processes will
play a prominent role.

In this context one should point out that van Leeuvanhoek wasreally lucky. If the animalcula
that he discovered where by an order of magnitude smaller, hewould not see them with the micro-
scopes he built. Moreover, the theorists of the 17th centurydid not make any predictions for this
new world. In this sence particle physicists are in a better position. We are all convinced that some
new animalcula must exist at the short distance scales explored by the LHC and new high precision
experiments. Moreover we have some ideas how they could looklike, even if there are different
opinions on their possible appearance. This talk deals withthe search for new animalcula with the
help of flavour physics. More details on this search can be found in [1] as well as [2–6]. I should
also warn possible readers that in view of space limitationsmy list of references is incomplete.
This is compensated by approximately 300 references in [1].There is also some overlap with the
latter review but I made an effort to include also new developments that cannot be found there.

2. Beyond the SM

2.1 Preliminaries

The fundamental Lagrangian of the SM consists of four pieces

LSM = Lgauge+Lfermion+LHiggs+LYukawa, (2.1)
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of which the first two terms containing kinetic terms of gaugebosons and fermions, invariant under
the SM gauge group, have been rather well tested at various laboratories, in particular at CERN
and Fermilab. The situation with the last two terms is different.

• LHiggs is responsible for spontaneous breakdown of the electroweak symmetry and the gen-
eration ofW± andZ0 masses. It provides also the mass for the Higgs boson. The potential in
this term driving this breakdown, even if consistent with the gauge symmetry, is rather adhoc.
Clearly we are here at the level similar to the Ginzburg-Landau theory of superconductivity.
A more dynamical mechanism of electroweak symmetry breakdown is absent in the SM.

• LYukawa is responsible for the generation of fermion masses throughYukawa-like interactions
of fermions with the Higgs system. A natural scale for fermion masses generated in this man-
ner is the value of the vacuum expectationv of the relevant neutral component of the Higgs
doublet, this means 246 GeV in my conventions. This works forthe top quark but fails totally
for the remaining fermions. Their masses are by orders of magnitude smaller thanmt . Con-
sequently in order to describe the observed fermion mass spectrum Yukawa interactions must
have a very hierarchical structure. This hierarchical structure is believed to be responsible
for the observed hierarchy in flavour violating interactions of quarks. However, a convincing
theory behind this hierarchy is still missing.

Thus in spite of the fact that the SM appears to describe the existing data rather well, it does
with the help of 28 parameters of which 22 recide in the flavoursector.

Taking all these facts together, the message is clear: in oursearch for a more fundamental
theory we need to improve our understanding of electroweak symmetry breaking and of flavour
which would allow us to answer the crucial question:

What is the dynamical origin of the observed electroweak symmetry breaking, of related
fermion masses and the reason for their hierarchy and hierarchy of their flavour-changing
interactions?

Related important questions are clearly these ones:

• Will the dynamics of electroweak symmetry breaking be driven by an elementary Higgs and
be calculable within perturbation theory?

• Will these dynamics be related to a new strong force with a composite Higgs or without
Higgs at all?

• Could these dynamics help us to explain the amount of matter-antimatter asymmetry and the
amount of dark matter observed in the universe?

• Will these dynamics help us to explain various anomalies observed recently in the flavour
data?

Whatever these dynamics will be, we need new particles and new forces in order to answer
all these questions and this means new animalcula at the scales explored by the LHC and high
precision experiments. But the identification of them is quite challenging both experimentally and
theoretically.
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In order to illustrate this problematic from the point of view of flavour physics, let us consider
the tree level decayB+ → τ+ντ which in the SM is just mediated by aW+ exchange. The resulting
branching ratio reads

Br(B+ → τ+ντ)SM =

∣
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, (2.2)

whereg2 is theSU(2)L coupling constant andA collects all factors that depend on the parameters
of the SM.

Let us next assume the presence of a heavy charged boson (scalar or vector)H+ mediating
this decay as well, so that the branching ratio is modified as follows

Br(B+ → τ+ντ)SM+H =
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HeregH is a new coupling constant,MH is the mass ofH+ andB collects all factors that depend on
the parameters of the new physics (NP) model.

Finally let us assume that experiments find the disagreementwith the SM prediction:

Br(B+ → τ+ντ)EXP−Br(B+ → τ+ντ)SM 6= 0. (2.4)

In principle this deviation could signal the presence of thebosonH+ and by suitably choosing
the couplinggH , the massMH andB we could obtain the agreement with the data. Yet, clearly
we cannot be sure that this is really the explanation, as manyother NP contributions could be
responsible for this anomaly. What would definitely help would be the discovery ofH+ in high
energy collisions like those taking place at the LHC or TEVATRON, but what ifMH is beyond the
reach of of these machines? Moreover, even ifH+ and other new particles could be discovered at
the LHC, the measurement of their properties, in particulartheir flavour interactions, both flavour
violating and flavour conserving will be a real challange. Here rare and CP-violating phenomena
in low energy, high precision experiment can offer a great help, as they did already in the past 50
years. Yet, as we have seen above, a single measurement of a rare process, even if signalling the
presence of new particles, will not be able to tell us what these particles are.

The message is clear: In order to identify new animalcula through flavour physics and gener-
ally through high precision experiments we need:

• Many high precision measurements of many observables and precise theory,

• Identification of patterns of flavour violation in various NPmodels, in particular correlations
between many flavour observables that could distinguish between various NP scenarios,

• Identification of correlations between low energy flavour observables and observables mea-
sured in high energy collisions.

Despite the impressive success of the CKM picture of flavour changing interactions [7, 8] in
which the GIM mechanism [9] for the suppression of flavour changing neutral currents (FCNC)
plays a very important role, there are many open questions oftheoretical and experimental nature
that should be answered before we can claim to have a theory offlavour. Among the basic questions
in flavour physics that could be answered in the present decade are the following ones:
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1. What is the fundamental dynamics behind the electroweak symmetry breaking that very
likely plays also an important role in flavour physics?

2. Are there any new flavour symmetries that could help us to understand the existing hierar-
chies of fermion masses and the hierarchies in the quark and lepton flavour violating interac-
tions? Are they local or global? Are they continuous or discrete?

3. Are there any flavour violating interactions that are not governed by the SM Yukawa cou-
plings? In other words, is the Minimal Flavour Violation (MFV) the whole story?

4. Are there any additionalflavour violatingand CP-violating (CPV) phases that could explain
certain anomalies present in the flavour data and simultaneously play a role in the explanation
of the observed baryon-antibaryon asymmetry in the universe (BAU)?

5. Are there anyflavour conservingCPV phases that could also help in explaining the flavour
anomalies in question and would be signalled in this decade through enhanced electric dipole
moments (EDMs) of the neutron, the electron and of other particles?

6. Are there any new sequential heavy quarks and leptons of the 4th generation and/or new
fermions with exotic quantum numbers like vector-like fermions?

7. Are there any elementary neutral and charged scalar particles with masses below 1 TeV and
having a significant impact on flavour physics?

8. Are there any new heavy gauge bosons representing an enlarged gauge symmetry group?

9. Are there any relevant right-handed (RH) weak currents that would help us to make our
fundamental theory parity conserving at short distance scales well below those explored by
the LHC?

10. How would one successfully address all these questions if the breakdown of the electroweak
symmetry would turn out to be of a non-perturbative origin?

An important question is the following one: will some of these questions be answered through
the interplay of high energy processes explored by the LHC with low energy precision experiments
or are the relevant scales of fundamental flavour well beyondthe energies explored by the LHC
and future colliders in this century? The existing tensionsin some of the corners of the SM to
be discussed below and still a rather big room for NP contributions in rare decays of mesons and
leptons and CP-violating observables, including in particular EDMs, give us hopes that indeed
several phenomena required to answer at least some of these questions could be discovered in this
decade.

2.2 Superstars of Flavour Physics in 2011-2016

As far as high precision experiments are concerned a number of selected processes and ob-
servables will, in my opinion, play the leading role in learning about the NP in this new territory.
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This selection is based on the sensitivity to NP and theoretical cleanness. The former can be in-
creased with the increased precision of experiments and thelatter can improve with the progress in
theoretical calculations, in particular the non-perturbative ones like the lattice simulations.

My superstars for the coming years are as follows:

• The mixing induced CP-asymmetrySψφ(Bs) that is tiny in the SM:Sψφ ≈ 0.04. The asym-
metrySφφ (Bs) is also important. It is also very strongly suppressed in theSM and is sensitive
to NP similar to the one explored through the departure ofSφKS(Bd) from SψKS(Bd) [10].

• The rare decaysBs,d → µ+µ− that could be enhanced in certain NP scenarios by an order of
magnitude with respect to the SM values.

• The angleγ of the unitarity triangle (UT) that will be precisely measured through tree level
decays.

• B+ → τ+ντ that is sensitive to charged Higgs particles.

• The rare decaysK+ → π+νν̄ andKL → π0νν̄ that belong to the theoretically cleanest decays
in flavour physics.

• The decaysB→ Xsνν̄ , B→ K∗νν̄ andB→ Kνν̄ that are theoretically rather clean and are
sensitive to RH currents.

• Numerous angular symmetries and asymmetries inB→ K∗l−l−.

• Lepton flavour violating decays likeµ → eγ , τ → eγ , τ → µγ , decays with three leptons in
the final state andµ −econversion in nuclei.

• Electric dipole moments of the neutron, the electron, atomsand leptons.

• Anomalous magnetic moment of the muon(g− 2)µ that indeed seems to be ”anomalous”
within the SM even after the inclusion of radiative corrections.

• The ratioε ′/ε in KL → ππ decays which is known experimentally within 10% and which
should gain in importance in this decade due to improved lattice calculations.

• Precise measurements of two-bodyBd and in particularBs decays which in combination
with QCD factorization and various flavour symmetries [3] could teach us more about the
interplay of strong and electroweak interactions including NP.

Clearly, there are other stars in flavour physics but I believe that the ones above will play the
crucial role in our search for the theory of flavour. Having experimental results on these decays
and observables with sufficient precision accompanied by improved theoretical calculations will
exclude several presently studied models reducing therebyour exploration of short distance scales
to a few avenues.

6
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2.3 Superiority of Top-Down Approach in Flavour Physics

Particle physicists are waiting eagerly for a solid evidence of NP for the last 30 years. Except
for neutrino masses, the BAU and dark matter, no clear signalemerged so far. While waiting for
experimental signals several strategies for finding NP havebeen developed. In addition to precision
calculations within the SM that allow to find the hugebackgroundto NP coming from the known
dynamics of this model (QCD corrections in flavour physics are reviewed in [11]), one distinguishes
betweenbottom-upand top-downapproaches. Here I would like to express my personal view
on these two approaches in the context of flavour physics and simultaneous exploration of short
distance physics both through LHC and high precision experiments.

2.3.1 The Bottom-Up Approach

In this approach one constructs effective field theories involving only light degrees of freedom
including the top quark in which the structure of the effective Lagrangians is governed by the
symmetries of the SM and often other hypothetical symmetries. This approach is rather powerful
in the case of electroweak precision studies and definitely teaches us something about∆F = 2
transitions. In particular lower bounds on NP scales depending on the Lorentz structure of operators
involved can be derived from the data [2,12].

However, except for the case of MFV and closely related approaches based on flavour sym-
metries, the bottom-up approach ceases, in my view, to be useful in ∆F = 1 decays, because of
very many operators that are allowed to appear in the effective Lagrangians with coefficients that
are basically unknown [13,14]. In this approach then the correlations between various∆F = 2 and
∆F = 1 observables inK, D, Bd andBs systems are either not visible or very weak, again except
MFV and closely related approaches. Moreover the correlations between flavour violation in low
energy processes and flavour violation in high energy processes to be studied soon at the LHC are
lost. Again MFV belongs to a few exceptions.

2.3.2 The Top-Down Approach

My personal view shared by some of my colleagues is that the top-down approach is more
useful in flavour physics. Here one constructs first a specificmodel with heavy degrees of freedom.
For high energy processes, where the energy scales are of theorder of the masses of heavy particles
one can directly use this “full theory” to calculate variousprocesses in terms of the fundamental
parameters of a given theory. For low energy processes one again constructs the low energy theory
by integrating out heavy particles. The advantage over the previous approach is that now the
coefficients of the resulting local operators are calculable in terms of the fundamental parameters of
this theory. In this manner correlations between various observables belonging to different mesonic
systems and correlations between low energy and high-energy observables are possible. Such
correlations are less sensitive to free parameters than separate observables and represent patterns
of flavour violation characteristic for a given theory. These correlations can in some models differ
strikingly from the ones of the SM and of the MFV approach.

2.4 Anatomies of explicit models

Having the latter strategy in mind my group at the Technical University Munich, consisting
dominantly of diploma students, PhD students and young post–docs investigated in the last decade

7
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flavour violating and CP-violating processes in a multitudeof models. The names of models ana-
lyzed by us are collected in Fig. 1. A summary of these studiesbefore 2011 with brief descriptions
of all these models can be found in [1]. Below, I will frequently refer to these results and will
briefly mention the most recent results obtained in my group.

Figure 1: Various patterns of flavour violation around the Flavour Clock.

3. First Messages from New Animalcula

3.1 Preliminaries

While the CKM+GIM picture of flavour and CP Violation describes the existing data surpris-
ingly well, a number of anomalies observed in last years indicate that new Animalcula could be
already in sight. Three of these anomalies concern CP violation in KL, Bd andBs systems and all
three are related to particle-antiparticle mixing. Also the data on the decayB+ → τ+ν seem to de-
part from the SM expectations. Last but certainly not least the anomalous magnetic moment of the
muon,(g−2)µ , is by 3.2 σ above the SM value. Let me then briefly summarize these anomalies.

3.2 TheεK −SψKS Anomaly

It has been pointed out in [16, 17] that the SM prediction forεK implied by the measured
value ofSψKS = sin2β , the ratio∆Md/∆Ms and the value of|Vcb| turns out to be too small to agree
well with experiment. This tension betweenεK andSψKS has been pointed out from a different
perspective in [15, 18–20]. These findings have been confirmed by a UTfitters analysis [21]. The
CKMfitters having a different treatment of uncertainties find less significant effects inεK [22].

Indeed taking the experimental value ofSψKS = 0.672±0.023,|Vcb|= 0.0416, the most recent
value of the relevant non-perturbative parameterB̂K = 0.724± 0.008± 0.028 [23] (see also the
most recent message from RBC and UKQCD collaborations [24]B̂K = 0.749± 0.027) resulting
from unquenched lattice calculations and including long distance (LD) effects in ImΓ12 and ImM12

8
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in the K0− K̄0 mixing [16, 25] as well as recently calculated NNLO QCD corrections toεK [26]
one finds [26]

|εK |SM = (1.90±0.26) ·10−3, (3.1)

visibly below the experimental value|εK |exp = (2.23±0.01) ·10−3.

On the other hand sin2β = 0.85±0.05 from SM fits of the Unitarity Triangle (UT) is signifi-
cantly larger than the experimental valueSψKS = 0.672±0.023. This discrepancy is to some extent
caused by the desire to fitεK [15–20] andBr(B+ → τ+ντ) [20]. For the most recent discussions
including up to date numerics see [27–29].

One should also recall the tension between inclusive and exclusive determinations of|Vub| with
the exclusive ones in the ballpark of 3.5 ·10−3 and the inclusive ones typically above 4.0 ·10−3.
As discussed in [30] an interesting solution to this problemis the presence of RH charged currents,
which selects the inclusive value as the true value, implying again sin2β ≈ 0.80 [31].

As discussed in [15, 16] and subsequent papers of these authors a negative NP phaseϕBd in
B0

d − B̄0
d mixing would solve both problems, provided such a phase is allowed by other constraints.

Indeed we have then

SψKS(Bd) = sin(2β +2ϕBd) , Sψφ (Bs) = sin(2|βs|−2ϕBs) , (3.2)

where the corresponding formula forSψφ in the presence of a NP phaseϕBs in B0
s − B̄0

s mixing
has also been given. With a negativeϕBd the true sin2β is larger thanSψKS, implying a higher
value on|εK |, in reasonable agreement with data and a better UT-fit. This solution would favour
the inclusive value of|Vub| as chosen e.g. by RH currents but as pointed out in [31] this particular
solution of the ”Vub− problem′′ does not allow for a good fit toSψKS if large Sψφ is required.

3.3 Facing an enhanced CPV in theBs mixing

The first detailed SM and model independent studies of CP violation in theB0
s − B̄0

s mixing in
relation to Tevatron and LHCb experiments go back to [32,33]. Among the recent studies of these
authors let me just quote [27,34].

This topic became rather hot recently. Indeed possibly the most important highlight in flavour
physics in 2008, 2009 [35] and even more in 2010 was the enhanced value ofSψφ measured by the
CDF and D0 collaborations, seen either directly or indirectly through the correlations with various
semi-leptonic asymmetries. While in 2009 and in the Spring of 2010 [36], the messages from
Fermilab indicated good prospects forSψφ above 0.5, the messages from ICHEP 2010 in Paris,
softened such hopes a bit [37]. Both CDF and D0 find the enhancement by only oneσ . Yet, this
does not yet precludeSψφ above 0.5, which would really be a fantastic signal of NP. Indeed various
recent fits indicate thatSψφ could be even as high as 0.8 [27]. Let us hope that the future data from
Tevatron and in particular from the LHCb, will measure this asymmetry with sufficient precision
so that we will know to which extent NP is at work here. One should also hope that the large CPV
in dimuon CP asymmetry from D0, that triggered new activities, will be better understood. I have
nothing to add here at present and can only refer to numerous papers [22,38–41].

In what follows I will decribe how different NP scenarios would face a future measurement of
a significantly enhanced value ofSψφ .

9
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The valueSψφ ≥ 0.5 can be obtained in the RSc model due to KK gluon exchanges andalso
heavy neutral KK electroweak gauge boson exchanges [42]. See also [43]. In the supersymmetric
flavour models with the dominance of RH currents double Higgspenguins constitute the dominant
NP contributions responsible forSψφ ≥ 0.5, while in models where NP LH current contributions are
equally important, also gluino boxes are relevant. On the operator level LR operators are primarly
responsible for this enhancement. Detailed analysis of this different cases can be found in [44].
Interestingly the SM4 having only(V −A)× (V −A) operator is also capable in obtaining high
values ofSψφ [45–49]. In the LHT model where only(V −A)× (V −A) operators are present and
the NP enters at higher scales than in the SM4,Sψφ above 0.5 is out of reach [50].

All these models contain new sources of flavour and CP violation and it is not surprising that
in view of many parameters involved, large values ofSψφ can be obtained. The question then arises
whether strongly enhanced values of this asymmetry would uniquely imply new sources of flavour
violation beyond the MFV hypothesis. The answer to this question is as follows:

• In models with MFV and flavour blind phases (FBPs) set to zero,Sψφ remains indeed SM-
like.

• In supersymmetric models with MFV even in the presence of non-vanishing FBPs, at both
small and large tanβ , the supersymmetry constraints do not allow values ofSψφ visibly
different from the SM value [40,44,51].

• In the 2HDMMFV in which at one-loop both Higgs doublets couple to up- and down-quarks in
the context of MFV, it is possible to obtainSψφ ≥ 0.5 while satisfying all existing constraints
[52].

The driving force for large values ofSψφ in this NP scenario are FBPs in interplay with the
CKM matrix.1 Dependently whether these phases appear in Yukawa couplings and/or Higgs po-
tential one can distinguish three scenarios:

A) The FBPs in the Yukawa interactions are the dominant source of new CPV. In this case the
NP phasesϕBs andϕBd are related through [52]

ϕBd ≈
md

ms
ϕBs ≈

1
17

ϕBs. (3.3)

Thus in this scenario largeϕBs required to obtain values ofSψφ above 0.5 imply a unique small
shift in SψKS that allows to lowerSψKS from 0.74 down to 0.70, that is closer to the experimental
value 0.672±0.023. This in turn implies that it is sin2β = 0.74 2 and notSψKS = 0.67 that should
be used in calculatingεK resulting in a value ofεK ≈ 2.0·10−3 within oneσ from the experimental
value. The direct Higgs contribution toεK is negligible because of small massesmd,s. We should
emphasize that onceϕBs is determined from the data onSψφ by means of (3.2), the implications for
εK andSψKS are unique. The plots ofεK andSψKS versusSψφ in [52] show this very transparently.

1Various recent papers on FBPs not discussed here are collected in [53]. See, in particular, in the context of the
Aligned two-Higgs-doublet model [54]. Also numerous studies of 2HDM models have been done by Gustavo Branco
and his group. See [55] and earlier papers.

2The present value value from the most recent UT fit analyses mentioned above is a bit higher and close to 0.80
modifying a bit the numerics below.
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On the other hand this scenario does not provide any clue for the difference between inclusive and
exclusive determinations of|Vub|. Moreover, it appears that (see below) that the effect of FBPs in
Yukawa couplings in a MFV framework is a bit to weak to solve quantitatively existing tensions.

B) The FBPs in the Higgs potential are are the dominant source ofnew CPV. In this case the
NP phasesϕBs andϕBd are related through [38,40]3

ϕBd = ϕBs (3.4)

and the plots ofεK and SψKS versusSψφ are strikingly modified [57]: the dependence is much
stronger and even moderate values ofSψφ can solve all tensions. However, large values ofSψφ are
not allowed if one wants to reproduce the experimental valueof SψKS.

C) Hybrid scenario in which FBPs are present in both Yukawa interactions and Higgs potential
so that [57]

ϕBd = a
md

ms
ϕBs +bϕBs = κϕBs, (3.5)

wherea,b,κ are real coefficients.
Presently it is not clear which relation betweenϕBs andϕBd fits best the data but the model

independent analysis of [38] indicates thatκ ≈ 1/5. Which of the two flavour-blind CPV mech-
anisms dominates depends on the value ofSψφ , which is still affected by a sizable experimental
error, and also by the precise amount of NP allowed inSψKS.

3.4 Implications of an enhancedSψφ

There are many implications of an enhanced value ofSψφ in concrete NP models, which have
been worked out in our papers. We have reviewed these implications in some details in [1]. Here
we will just collect some of the striking implications:

• Enhanced Br(Bs → µ+µ−) in SUSY flavour models, 2HDMMFV and SM4,

• Enhanced Br(Bd → µ+µ−) in 2HDMMFV and in some SUSY flavour models,

• Br(Bd → µ+µ−) forced to be SM-like in SM4,

• Br(K+ → π+νν̄) and Br(KL → π0νν̄) forced to be SM-like in LHT [50] and RSc models
[59] but not in SM4.

• Automatic enhancements of Br(µ → eγ), Br(τ → µγ), (g−2)µ and of EDMsde anddn in
SUSY-GUT models [51,58]

We observe that simultaneous consideration ofSψφ and Br(Bs,d → µ+µ−) can already help us
in eliminating some NP scenarios. Even more insight will be gained when Br(K+ → π+νν̄) and
Br(KL → π0νν̄) will be measured. In particular ifSψφ will turn out to be SM-like the branching
ratios Br(K+ → π+νν̄) and Br(KL → π0νν̄) can now be strongly enhanced in the LHT model [50]
and the RSc model [43, 59] with respect to the SM but this is notguaranteed. These patterns of
flavour violations demonstrate very clearly the power of flavour physics in distinguishing different
NP scenarios.

3This relation has been postulated already in [16,56].
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3.5 Bs → µ+µ− and Bd → µ+µ−

The branching ratios Br(Bs,d → µµ̄) are very strongly suppressed in the SM:

Br(Bd → µ+µ−)SM = (1.0±0.1)×10−10, (3.6)

Br(Bs → µ+µ−)SM = (3.2±0.2)×10−9 . (3.7)

and satisfy in the SM and CMFV models the relation [60]

Br(Bs → µµ̄)

Br(Bd → µµ̄)
=

B̂d

B̂s

τ(Bs)

τ(Bd)

∆Ms

∆Md
. (3.8)

It involves only measurable quantities except for the ratioB̂s/B̂d that is known already now from
lattice calculations within 3% [62].

The upper bounds on Br(Bd → µ+µ−) from CDF, D0 and LHCb are still by an order of magni-
tude larger than the SM predictions but in the coming years LHCb should be able to bring this upper
bounds down within a factor two from the SM predictions or to discover NP. In these studies the
methodology developed recently in [61] and presented by Niels Tuning at this conference should
be very useful. The branching ratios in question can be enhanced even by an order of magnitude in
a number of NP scenarios and the relation in (3.8) can also be strongly violated [1].

3.6 EDMs,(g−2)µ and Br(µ → eγ)

While I was dominantly discussing quark physics and flavour violating processes, these three
observables are also very interesting. They are governed bydipole operators but describe different
physics as far as CP violation and flavour violation is concerned. EDMs are flavour conserving but
CP-violating,µ → eγ is CP-conserving but lepton flavour violating and finally(g−2)µ is lepton
flavour conserving and CP-conserving. A nice paper discussing all these observables simultane-
ously is [63].

In concrete models there exist correlations between these three observables of which EDMs
andµ → eγ are very strongly suppressed within the SM and have not been seen to date.(g−2)µ

on the other hand has been very precisely measured and exhibits a 3.2σ departure from the very
precise SM value (see [64] and references therein)4. Examples of these correlations can be found
in [44, 51]. In certain supersymmetric flavour models with non-MFV interactions the solution of
the(g−2)µ anomaly implies simultaneouslyde and Br(µ → eγ) in the reach of experiments in this
decade. In these two papers several correlations of this type have been presented.

The significant FBPs required to reproduce the enhanced value ofSψφ in the 2HDMMFV model,
necessarily imply large EDMs of the neutron, Thallium and Mercury atoms. Yet, as a detailed
analysis in [57] shows the present upper bounds on the EDMs donot forbid sizable non-standard
CPV effects inBs mixing. However, if a large CPV phase inBs mixing will be confirmed, this will
imply hadronic EDMs very close to their present experimental bounds, within the reach of the next
generation of experiments. For a recent model independent analysis of EDMs see [66].

4In a very recent paper it is claimed that the SM agrees perfectly with the data [65], confirmation or disproval of
this claim would be very important.
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3.7 Waiting for precise predictions ofε ′/ε

The flavour studies of the last decade have shown that provided the hadronic matrix elements of
QCD-penguin and electroweak penguin operators will be known with sufficient precision,ε ′/ε will
play a very important role in constraining NP models. We havewitnessed recently an impressive
progress in the lattice evaluation ofB̂K that elevatedεK to the group of observables relevant for
precision studies of flavour physics. Hopefully this could also be the case ofε ′/ε already in this
decade.

3.8 B+ → τ+ντ

Another prominent anomaly in the data not discussed by us sofar is found in the tree-level
decayB+ → τ+ντ . Within the SM we found [44]

Br(B+ → τ+ντ)SM = (0.80±0.12)×10−4, (3.9)

which agrees well with the result presented by the UTfit collaboration [67].
On the other hand, the present experimental world avarage based on results by BaBar and

Belle reads [67]
Br(B+ → τ+ντ)exp = (1.73±0.35)×10−4 , (3.10)

which is roughly by a factor of 2 higher than the SM value. We can talk about a tension at the 2.5σ
level.

With a higher value of|Vub| as obtained through inclusive determination this discrepancy can
be decreased significantly. For instance with a value of 4.4× 10−3, the central value predicted
for this branching ratio would be more like 1.25×10−4. Yet, this would then require NP phases in
B0

d− B̄0
d mixing to agree with the data onSψKS. In any case values of Br(B+ → τ+ν)exp significantly

above 1× 10−4 will signal NP contributions either in this decay or somewhere else. For a very
recent discussion of such correlations see [20].

While the final data from BaBar and Belle will lower the exparimental error on Br(B+ → τ+ν),
the full clarification of a possible discrepancy between theSM and the data will have to wait for
the data from Belle II and SFF in Rome. Also improved values for FB from lattice and|Vub| from
tree level decays will be important if some NP like charged Higgs is at work here. As a significant
progress made by lattice groups [62] is continuing, there are good chances that around 2015 the
picture ofB+ → τ+ν will be much clearer. The same applies to manyB physics observables as
well.

4. Messages from the last moment

Finally, I would like to report on two recent papers from Munich.
In the first paper a minimal theory of fermion masses (MTFM) has been constructed [68]. This

amounts to extend the SM by heavy vectorlike fermions with flavour-anarchical Yukawa couplings
that mix with chiral fermions such that small SM Yukawa couplings arise from small mixing angles.
This model can be regarded as an effective description of thefermionic sector of a large class of
existing models and thus might serve as a useful reference frame for a further understanding of
flavour hierarchies in the SM. Already such a minimal framework implies modifications in the
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couplings ofW±, Z andH to fermions and leading to novel FCNC effects with a special structure
of their suppression that is different from MFV. This work shows once again that models attempting
the explanation of the hierarchies of fermion masses and of its hierarchical flavour violating and
CP violating interactions in most cases imply non-MFV interactions. This is also evident from
the study of supersymmetric flavour models [44] and more general recent studies [69,70]. Further
phenomenological implications of MTFM will be presented soon.

In the second paper [71] considering a general scenario withnew heavy neutral gauge bosons,
present in particular inZ′ and gauge flavour models, we have pointed out two new contributions
to theB→ Xsγ decay. The first one originates from one-loop diagrams mediated by gauge bosons
and heavy exotic quarks with electric charge−1/3. The second contribution stems from the QCD
mixing of neutral current-current operators generated by heavy neutral gauge bosons and the dipole
operators responsible for theB→ Xsγ decay. The latter mixing is calculated in our paper for the
first time. We also discussed general sum rules which have to be satisfied in any model of this
type. We emphasise that the neutral gauge bosons in questioncould also significantly affect other
fermion radiative decays as well as non-leptonic two-bodyB decays,ε ′/ε , anomalous(g−2)µ and
electric dipole moments. Implications of these findings forconcrete models will be presented soon.

5. Grand Summary

I hope I convinced the readers that flavour physics is a very rich field which necessarily will
be a prominent part of a future theory of fundamental interactions both at large and short distance
scales. While MFV could work to first approximation, recent data indicate that at certain level
non-MFV interactions could be present.

What role will be played by flavour blind phases in future phenomenology depends on the
future experimental data on EDMs. Similar comment applies to LFV. A discovery ofµ → eγ rate
at the level of 10−13 would be a true mile stone in flavour physics. Also the discovery of Sψφ

at the level of 0.3 or higher would have a very important impact on quark flavour physics. The
measurements of Br(Bs,d → µ+µ−) in conjunction withSψφ , K+ → π+νν̄ and at later stageKL →

π0νν̄ will allow to distinguish between various models. Here the correlations between various
observables will be crucial. It is clearly important to clarify the origin of the tensions betweenεK ,
SψKS, |Vub| and Br(B+ → τ+ντ) but this possibly has to wait until Belle II and later SFF willenter
their operation.

In any case I have no doubts that we will have a lot of fun with flavour physics in this decade
and that this field will offer very important insights into the short distance dynamics.
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