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1. Motivation

The experimental observation of oscillations between different neutrino flavour eigenstates
implies that neutrinos are massive and that the lepton-family quantum numbers (Le,Lµ ,Lτ) are not
conserved. As a consequence, we also expect lepton-flavour violation (LFV) in transitions between
charged leptons. However, the physics responsible for neutrino masses and mixing – in general –
can be independent of the physics related to LFV in charged lepton processes:

• Neutrino masses are most naturally obtained from see-saw scenarios, where the masses of
the new heavy particles are typically of the order of a grand-unification (GUT) scale, and the
new interactions are generally also violating lepton-number L = Le +Lµ +Lτ (LNV). The
simplest candidates for such new particles are heavy right-handed Majorana neutrinos which
naturally fit into 16-plets of an SO(10) GUT. The dynamics of these heavy particles may also
generate a baryon-antibaryon asymmetry in the universe (baryogenesis via leptogenesis).

• In a minimally extended Standard Model (SM), where the only source of LFV is coming from
the operators responsible for the neutrino masses, the LF-violating effects are suppressed by
loop factors and by the neutrino-mass differences, and turn out to be tiny. For instance, for
µ → eγ transitions, one obtains B[µ → eγ]SM ∼ 10−54, to be compared with the present (or
expected future) bounds B[µ → eγ]exp. < 10−11(13).

• On the other hand, generic models for new physics (NP) at the TeV scale contain new sources
for LFV (but not necessarily for LNV), leading to decay rates accessible with future experi-
ments [1].

From the low-energy point of view, these observations can be accounted for by considering
the SM as an effective theory and extending its Lagrangian,

Leff = LSM +
1

ΛLNV
Odim−5 +

1
Λ2

LFV
Odim−6 + . . . , with ΛLNV� ΛLFV . (1.1)

Here, the dimension-5 operator responsible for the neutrino masses is uniquely given in terms of
the lepton doublets Li and the Higgs doublet H in the SM,

Odim−5 = (gν)
i j (L̄iH̃)(H̃†L j)c +h.c. (1.2)

and the misalignment between the flavour matrix gν and the Yukawa coupling matrix YE in the
charged-lepton sector leads to a non-trivial mixing matrix UPMNS for neutrino oscillations.1 An
example for a dimension-6 operator, leading to LFV decays like µ → eγ , is

Odim−6 3 ci j L̄i
σ

µν H E j
R Fµν , (1.3)

where ER are the charged-lepton singlets and Fµν the hypercharge field strength tensor. For generic
coupling constants ci j ∼ O(1), the bound on the µ → eγ branching ratio would translate into
ΛLFV > 105 TeV.

1In a scenario with right-handed Majorana neutrinos (type-I see saw), one would identify gν/ΛLNV = Yν M−1 Y T
ν ,

where Yν is the Yukawa matrix in the neutrino sector, and M the Majorana mass matrix. Models with additional scalar
triplets (type-II see saw) or fermion triplets (type-III see saw) are also possible.
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Besides the radiative decays µ → eγ and τ → µ(e)γ , the LFV decays τ → 3` (` = µ,e) and
µ → 3e are important probes of physics beyond the SM. Depending on which of the operators in
(1.1) dominates the decay, one obtains different distributions in invariant masses (see Fig. 1) or an-
gular variables (see [5]), a feature which also have to be accounted for when deriving experimental
limits. Finally, LFV can also be observed in hadronic decays and via µ-e conversion in nuclei. For
a summary of the experimental status and prospects, see [6].
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Figure 1: Phase-space distributions for τ → 3µ from different chiralities in NP operators: 4-lepton op-
erators with only left-handed leptons (LLLL), 4-lepton operators with 2 left- and 2 right-handed leptons
(LLRR), 2-lepton operator (LR) with radiative decay τ → µγ∗→ 3µ . Figure taken from [4].

2. Minimal Lepton-Flavour Violation

The idea of minimal flavour violation in the lepton sector (MLFV [2]) is to expand the flavour
coefficients of dim≥ 6 NP operators in (1.1) in terms of the flavour matrices YE and gν of the
minimally extended SM, and to assume that the expansion coefficients are at most of O(1). In
this way, the flavour coefficients can be expressed in terms of PMNS-matrix elements and lepton
masses. Compared to the generic case, LFV processes are thus naturally suppressed. On the other
hand, with respect to the minimally extended SM, one gains factors of ΛLNV/ΛLFV on the amplitude
level.2 For instance, the (dominant) coefficient of a purely left-handed 4-lepton operator,

(L̄iγ
µL j) (L̄kγµLl) ,

can be constructed from the flavour matrix gν which transforms as a 6-plet under the SU(3)L flavour
symmetry, and in MLFV it would be expressed as [2, 4](

c8 ∆
i
jδ

k
l + c27 Gik

jl

)
, c8,27 ∼O(1) ,

where ∆ and G denote the 8-tet and 27-plet in the reduction of gν ⊗g†
ν ∼ 6̄⊗6 = 1⊕8⊕27.

A typical prediction of MLFV is shown in Fig. 2, where the branching ratios for µ → eγ and
τ → µγ are compared to the experimental limits as a function of the neutrino mixing angle θ13.
Notice that the scale ΛLNV drops out from the ratio B(τ→ µγ)/B(µ→ eγ), and therefore – given

2The leading effects can be systematically singled out using a non-linear spurion formalism [3].
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the existing/foreseen experimental bounds – in MLFV one expects better experimental prospects
to observe µ → eγ than τ → µγ . It should be mentioned, however, that different mechanisms
responsible for the generation of neutrino masses can also lead to different formulations of MLFV
with different phenomenological consequences, see, for instance, [8].
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Figure 2: Branching ratios for µ → eγ and τ → µγ within MLFV compared to the experimental limits as
a function of the mixing angle s13 = sinθ13 and the CP-phase δ in the PMNS matrix for normal or inverted
neutrino-mass hierarchy, assuming ΛLNV = 1010 ·ΛLFV. Figure taken from [7].

3. LFV in Specific NP Models

For a variety of NP models, the phenomenology of LFV observables has been worked out
in detail. For a comparison between different models, one is interested in (i) whether the LFV
operators are induced at tree-level or via loop processes, (ii) how and to what extent the coeffi-
cients deviate from MLFV, (iii) how the predictions compare with the present/foreseen experimen-
tal bounds, (iv) what the constraints are on new sources of LFV and new-particle masses, (v) how
different LFV observables are correlated. In the following, we discuss three classes of NP models
in somewhat more detail: super-symmetric (SUSY) extensions of the SM, littlest Higgs models
with T-parity, and a model with a sequential 4th generation. More information and references can
be found in [1]. For further recent model analyses, see e.g. [9].

3.1 LFV in SUSY Models

In SUSY models (specifically the MSSM), new sources for LFV stem from the soft SUSY-
breaking sector, involving non-diagonal slepton mass matrices and tri-linear couplings. The leading
effects arise via sneutrino-chargino and slepton-neutralino loops, with LFV triggered by the mis-
alignment between leptons and sleptons. Additionally, non-holomorphic couplings of the Higgs
doublets Hu,d generate LFV coupling to neutral Higgs bosons which become relevant if the ratio of
vacuum expectation values tanβ = vu/vd is large [10] (the same would be true for general 2-Higgs
doublet models). In the generic MSSM, it is useful to stick to the mass-insertion approximation,
assuming small off-diagonal entries in the slepton mass matrices. These can, for instance, be gen-
erated by considering specific SUSY-breaking scenarios with universal slepton parameters at high
scales, and then working out the renormalization-group evolution to low energies. Depending on
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the model, additional constraints from (discrete) flavour symmetries [11] and/or specific assump-
tions on the see-saw parameters [12] can be implemented as well.

Let us, as an example, discuss a SUSY model in [11] where the authors specify the symmetry
group A4×Z3×U(1)FN, to enforce nearly tri-bi-maximal neutrino mixing. Besides the SUSY mass
parameters m0,1/2 for sleptons and gauginos, the relevant parameters for LFV phenomenology are

u =
〈φi〉
Λ f
∼ (0.01−0.05)∼ θ13 , t =

〈θFN〉
Λ f

∼ 0.05 , (3.1)

where u is a small expansion parameter classifying the breaking of the A4 symmetry, and θ13

refers to the mixing angle in the PMNS matrix. The parameter t is responsible for the observed
hierarchies in the charged-lepton Yukawa couplings, with 〈θFN〉 breaking the Froggatt-Nielsen
symmetry, and Λ f being a UV scale related to flavour-symmetry breaking. In this scenario, the
ratio of Higgs VEVs is restricted to small values, 2 ≤ tanβ ≤ 15. As a distinctive feature of
the model, which allows a discrimination with respect to other SUSY constructions, the flavour
symmetries determine the structure of the slepton mass matrices, which contain off-diagonal entries
at the flavour-symmetry breaking scale Λ f . The ratios Ri j = B(`i → ` jγ)/B(`i → ` jνiν̄ j) are
predicted to be approximately universal, Rµe≈Rτµ ≈Rτe. Given the experimental limit on Rµe, the
decay τ → µγ would thus not be observable in the foreseeable future. Moreover, the experimental
constraints require at least one of the following conditions to be met: a small flavour-symmetry
breaking parameter u ∼ 0.01, small tanβ , and or large SUSY mass parameters (above 1 TeV).
Predictions for the µ → eγ branching ratios are shown in Fig. 3.
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Figure 3: Predictions BR(µ→ eγ) as a function of m1/2, for different values of tanβ , u and m0, in a SUSY
model with discrete flavour symmetries. The red points correspond to the mass of the lightest chargino
being below the limit coming from direct searches. The horizontal lines show the current MEGA bound
(continuous line) and the prospective MEG bound (dashed line). Figures taken from [11].
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3.2 Littlest Higgs Model with T -Parity

An alternative to SUSY for resolving the hierarchy problem of the SM is provided by Little
Higgs models. In the following, we will refer to an analysis of the Littlest Higgs Model with T
parity (LHT) from Ref. [13] (see also [14]). Besides new heavy gauge bosons (detectable at the
LHC), T -parity requires new heavy mirror leptons (and quarks) with masses of the order TeV,
which contribute to LFV processes via penguin and box diagrams. The relevant input parameters
of the LHT model are identified as the scale parameter f , the three mirror lepton masses: M`

H1,2,3
,

the three mirror-lepton mixing angles: θ `
i j, and three new (Dirac) CP phases δ `

i j. In general, the
potential LFV effects in the LHT model exceed the SM by many orders of magnitude. Similarly
as in the previous SUSY scenario, the present experimental constraints already require a certain
amount of parameter tuning, with a somewhat large LHT scale parameter, and/or small mirror-
lepton mixing angles, and/or degenerate mirror lepton masses. Examples for correlations between
LFV decays and µ-e conversion in the LHT model are shown in Fig. 4.

Figure 4: Correlations between µ → 3e (left) or µ-e conversion (right) and µ → eγ in the LHT model, for
f = 1 TeV, 300 GeV≤M`

Hi
≤ 1.5 TeV. The blue dots denote the result one would obtain if only the dipole

contribution from µ → eγ∗ contributed. Figure taken from [13].

3.3 A 4th Generation of Leptons

As a final example, we are going to discuss a model with an additional fourth generation (4G)
of leptons (and quarks), introducing a new heavy charged lepton τ ′ and a (Dirac-)neutrino ντ ′ ,
together with an extended 4×4 mixing matrix Ui j in the lepton sector [15, 16]. In this set-up, the
radiative µ and τ decays, fulfill the simple relations

B(τ → µγ)

B(µ → eγ)
'
∣∣∣∣Uτ4

Ue4

∣∣∣∣2 B(τ−→ ντ µ
−

ν̄µ) ,

B(τ → µγ)

B(τ → eγ)
'
∣∣∣∣Uµ4

Ue4

∣∣∣∣2 B(τ−→ ντ µ−ν̄µ)

B(τ−→ ντe−ν̄e)
≈
∣∣∣∣Uµ4

Ue4

∣∣∣∣2 ,
B(τ → eγ)

B(µ → eγ)
'
∣∣∣∣Uτ4

Uµ4

∣∣∣∣2 B(τ−→ ντe−ν̄e) . (3.2)

which put stringent constraints on the elements |Ui4|, independent of the heavy neutrino mass. In
turn, the rate for µ–e conversion in nuclei is directly proportional to |Ue4Uµ4|2. This explains the
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correlations between radiative LFV decays and µ-e conversion shown in Fig. 5. From that figure,
we conclude that both τ → µγ and τ → eγ may be within experimental reach in the 4G model, but
not simultaneously. Furthermore, concerning µ-e conversion and µ→ eγ , the foreseen experiments
have the potential to further tighten the constraints on |Ue4Uµ4|.

Figure 5: Correlations between τ → µγ and τ → eγ (left) or µ-e conversion (right) and µ → eγ in the 4G
model. Figure taken from [16].

A comparison for LFV branching ratios from various models is shown in Table 1.

Table 1: Comparison of ratios of LFV branching ratios in the LHT model [13], the MSSM without signifi-
cant Higgs contributions [17], the MSSM with significant Higgs contributions [10], and the 4G model [16].
Table taken from [16].

ratio LHT MSSM (dipole) MSSM (Higgs) 4G

B(µ−→e−e+e−)
B(µ→eγ) 0.02. . . 1 ∼ 6 ·10−3 ∼ 6 ·10−3 0.06 . . .2.2

B(τ−→e−e+e−)
B(τ→eγ) 0.04. . . 0.4 ∼ 1 ·10−2 ∼ 1 ·10−2 0.07 . . .2.2

B(τ−→µ−µ+µ−)
B(τ→µγ) 0.04. . . 0.4 ∼ 2 ·10−3 0.06 . . .0.1 0.06 . . .2.2

B(τ−→e−µ+µ−)
B(τ→eγ) 0.04. . . 0.3 ∼ 2 ·10−3 0.02 . . .0.04 0.03 . . .1.3

B(τ−→µ−e+e−)
B(τ→µγ) 0.04. . . 0.3 ∼ 1 ·10−2 ∼ 1 ·10−2 0.04 . . .1.4

B(τ−→e−e+e−)
B(τ−→e−µ+µ−) 0.8. . . 2 ∼ 5 0.3. . . 0.5 1.5 . . .2.3
B(τ−→µ−µ+µ−)
B(τ−→µ−e+e−) 0.7. . . 1.6 ∼ 0.2 5. . . 10 1.4 . . .1.7

R(µTi→eTi)
B(µ→eγ) 10−3 . . .102 ∼ 5 ·10−3 0.08 . . .0.15 10−12 . . .26

4. Conclusions

Lepton flavour violation in neutrino oscillations is a well-established phenomenon and natu-
rally related to lepton-number violating physics at the GUT scale, with neutrino masses suppressed
by a large scale ΛLNV. As a consequence of the small neutrino masses, LFV in charged lepton
decays is tiny in the (minimally extended) SM. On the other hand, many extensions of the SM with
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NP at the TeV scale predict sizable effects for lepton-flavour violating muon or tau decays, as well
as LFV hadronic decays or µ-e conversion in nuclei. For the current and near-future experimental
searches for LFV this implies that:

• If LFV in charged lepton transitions is experimentally observed, this will be a clear signal
for physics beyond the SM, and the correlations between different LFV observables can be
used to distinguish different NP models.

• If, on the other hand, the experimental exclusion limits on LFV processes are further tight-
ened, the parameter space of various NP models will become more and more constrained,
and the absence of observable LFV beyond the SM would represent another case pointing
towards a symmetry principle in the flavour sector being responsible for minimal flavour
violation at low energies.

Acknowledgments

I would like to thank the organizers for a Beauty-ful conference, and Luca Merlo for useful
comments on the manuscript.

References

[1] M. Raidal et al., Eur. Phys. J. C57 (2008) 13.

[2] V. Cirigliano et al., Nucl. Phys. B 728 (2005) 121; Nucl. Phys. B 752 (2006) 18.

[3] T. Feldmann and T. Mannel, Phys. Rev. D 78 (2008) 036009.

[4] B. M. Dassinger et al., JHEP 0710 (2007) 039 .

[5] M. Giffels et al., Phys. Rev. D77 (2008) 073010.

[6] G. Lafferty, in these proceedings.

[7] G. Isidori, PoS E FT09 (2009) 034.

[8] S. Davidson and F. Palorini, Phys. Lett. B 642 (2006) 72. G. C. Branco et al. JHEP 0709 (2007) 004.
M. B. Gavela et al. JHEP 0909 (2009) 038. R. Alonso et al., arXiv:1103.5461 [hep-ph].

[9] A. G. Akeroyd, M. Aoki, H. Sugiyama, Phys. Rev. D79 (2009) 113010. Y. Farzan, S. Pascoli,
M. A. Schmidt, JHEP 1010 (2010) 111. R. Mohanta, Eur. Phys. J. C71 (2011) 1625. F. del Aguila,
J. I. Illana, M. D. Jenkins, JHEP 1103 (2011) 080.

[10] P. Paradisi, JHEP 0602 (2006) 050, JHEP 0608 (2006) 047.

[11] F. Feruglio et al., Nucl. Phys. B832 (2010) 251.

[12] S. Antusch et al., JHEP 0611 (2006) 090.

[13] M. Blanke et al., JHEP 0705 (2007) 013, Acta Phys. Polon. B41 (2010) 657.

[14] T. Goto, Y. Okada, Y. Yamamoto, Phys. Rev. D83 (2011) 053011, Y. Yamamoto, poster presented at
this conference. F. del Aguila, J. I. Illana, M. D. Jenkins, JHEP 0901 (2009) 080.

[15] H. Lacker, A. Menzel, JHEP 1007 (2010) 006.

[16] A. J. Buras et al., JHEP 1009 (2010) 104.

[17] J. R. Ellis et al., Phys. Rev. D66 (2002) 115013. A. Brignole, A. Rossi, Nucl. Phys. B701 (2004) 3.

8


