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Figure 1: The self-energy interactions of the gauge field with theAn
5 scalar fields.

In particle physics one of the major issues is to explain the fermion mass hierarchy and their
mixings. A clear feature of the fermion mass spectrum gives us [1, 2, 3]

mu ≪ mc ≪ mt , md ≪ ms ≪ mb , me ≪ mµ ≪ mτ , (1)

where a completely satisfactory theory of fermion masses and the related problem of mixing angles
is certainly lacking at present. However, there has been considerable effort to understand the hier-
archies of these mixing angles and fermion masses in terms ofthe renormalization group equations
(RGE) [3, 4, 5, 6, 7].

In general we use RGE as a probe to study the momentum dependence of the Yukawa cou-
plings, the gauge couplings, and the Cabibbo-Kobayashi-Maskawa (CKM) matrix elements them-
selves. In the Standard Model (SM), the one-loop corrections to the gauge couplings are given
by

16π2 dgi

dt
= bi

SMgi
3, (2)

wherebi
SM = (41

10,−
19
6 ,−7), t = ln(µ/MZ), andMZ is theZ boson mass. These equations lead

directly to the well known gauge unification around 1014 GeV scale.
With the commencement of the Large Hadron Collider (LHC), physicists have begun to ex-

plore the realm of new physics around the TeV scale. Among these new scenarios the Universal
Extra Dimension (UED) model features a tower of Kaluza-Klein (KK) states for each of the SM
fields, all of which have access to the extended spacetime manifold [4]. In the simplest case, there
is a single flat extra dimension of sizeR, compactified on anS1/Z2 orbifold. The zero modes of the
KK expansion of the SM fields in five dimensional spacetime areidentified with the 4-dimensional
SM fields.

At each excited KK level the one-loop corrections to the gauge couplings arise from the di-
agrams exactly mirroring those of the SM ground states [8](however, for the closed fermion one-
loop diagrams, one needs to count the contributions from both the left-handed and right-handed KK
modes of each chiral fermion to the self-energy of the gauge field), plus new contributions to the
self-energy of the gauge boson from the fifth component of the5D gauge fieldAM (M = 0,1,2,3,5)
at each KK excited level as depicted in Fig.1

Between the scaleR−1 where the first KK states are excited and the cutoff scaleΛ, there are
finite quantum corrections to the Yukawa and gauge couplingsfrom theΛR number of KK states.
Up to the scaleR−1 the first step KK excitation occurs, the RG evolution is logarithmic, controlled

2



P
o
S
(
K
r
u
g
e
r
 
2
0
1
0
)
0
4
5

Scaling of Yukawa and Quark Mixings in the UED model Lu-Xin Liu

0 5 10 15 20 25 30
0.4

0.5

0.6

0.7

0.8

0.9

1.0

t

co
up

lin
g

co
ns

ta
nt

s

3 4 5 6 7 8

0.4

0.6

0.8

1.0

1.2

t

co
up

lin
g

co
ns

ta
nt

s

Figure 2: The evolution of the gauge coupling constants in the (left panel) SM, where the dotted line is for
g3, the dashed line forg2 and the solid line forg1; and the (right panel) UED model where the solid lines are
for theR−1 = 1 TeV case, the dotted-dashed line is the 2 TeV case and the dashed line is the 10 TeV case.
The green lines are forg3, blue forg2 andg1 is red.

by the SM beta functions. With increasing energy, that is, aseach KK threshold is crossed, new
excitations come into play and govern new sets of beta functions until the next threshold is reached.
Therefore, to a good approximation, the structure of the one-loop RGE for the gauge couplings are
governed by

16π2 dgi

dt
= [bi

SM +(S(t)−1)b̃i]gi
3, (3)

whereS(t) = etMZR, andb̃i = (81
10,

7
6,−5

2), corresponding to each of the gauge couplings. We can
see that the dependence of the gauge couplings on the energy scale drastically changes the normal
one-loop running of the gauge couplings, and lowers the unification scale considerably.

As illustrated in the right panel of Fig.2, the extra spacetime dimensions naturally lead to the
appearance of grand unified theories at scales substantially below the usual GUT scale. Specifically,
for the compactification radiiR−1 = 1, 2, 10 TeV, we find the gauge couplings meet at around
Λ ∼ 30, 60, 330 TeV respectively.

Given that extra spacetime dimensions induce power law corrections for the gauge couplings,
it is natural to ask whether the fermion mass hierarchy mightalso be explained in our scenario.
In fact, the Yukawa couplings also receive finite one-loop corrections at each KK level and whose
magnitudes depend upon the cut off energy scale. Explicitly, the one-loop RGE for the Yukawa
couplings take the following form:

16π2 dYU

dt
= β SM

U + βUED
U , 16π2 dYD

dt
= β SM

D + βUED
D , 16π2 dYE

dt
= β SM

E + βUED
E , (4)

where the Yukawa coupling beta functionsβ SM
U , βUED

U , β SM
D , βUED

D , β SM
E , andβUED

E are defined in
[4]. The square of the up-type and down-type Yukawa couplingmatrices can be diagonalized by
using two unitary matricesU andV

UY †
UYUU† = diag( f 2

u , f 2
c , f 2

t ) , VY †
DYDV † = diag(h2

d ,h2
s ,h

2
b) . (5)

The evolution equations of the eigenvaluesf 2
u , f 2

c , f 2
t andh2

d ,h
2
s ,h

2
b have the following form:

16π2 d fi
2

dt
= fi

2[2(2S−1)T −2GU +3S fi
2−3S∑

j

h j
2
∣

∣Vi j
∣

∣

2
] ,

3
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Figure 3: The evolution of the mass ratiomu/mc, where the solid line is for the SM, the dashed (green) line
is theR−1 = 10 TeV UED case, the dotted-dashed (blue) line is the 2 TeV UED case and the dotted (red)
line is the 1 TeV UED case. Note that we shall use the same notation for the figures that follow.

16π2 dh j
2

dt
= h j

2[2(2S−1)T −2GD +3Sh j
2−3S∑

i

fi
2
∣

∣Vi j
∣

∣

2
] , (6)

wherei = u,c, t and j = d,s,b. The Yukawa coupling of the lepton sector can be further re-written
as

16π2 dya
2

dt
= ya

2[2(2S−1)T −2GE +3Sya
2] , (7)

with YE = diag(ye,yµ ,yτ). Also, note thatGU = 8g2
3+ 9

4g2
2+ 17

20g2
1+(S−1)(28

3 g2
3+ 15

8 g2
2+ 101

120g2
1) ,

GD = 8g2
3+ 9

4g2
2+ 1

4g2
1+(S−1)(28

3 g2
3+ 15

8 g2
2+ 17

120g2
1) , GE = (9

4g2
2+ 9

4g2
1)+(S−1)(15

8 g2
2+ 99

40g2
1) ,

andT = Tr[3Y †
UYU + 3Y †

DYD +Y †
EYE ] . Thus, together with Eq.(8), we have obtained the full set of

one-loop coupled RG equations for the Yukawa coupling, the CKM matrix, and the gauge cou-
plings. From these we can obtain the renormalization group flow of all observables related to
up and down quark masses and the CKM matrix elements. As such Eqs.(3, 6, 7, 8) constitute a
complete set of coupled differential equations for the three families.

For the hierarchy between the first two light generations, inthe leading order approximation,
one finds that the running behaviors of the mass ratios are governed by the combination of the third
family Yukawa couplings and the CKM matrix elements. This implies that the mass ratios of the
first two light generations have a slowed evolution well before the unification scale. Beyond that
point new physics would come into play (for example, see Fig.3). Quantitatively, similar to the
conclusions found in the SM [7, 9], here we find the scaling dependence ofmd/ms andme/mµ is
also very slow.

On the other hand, in Grand Unification Theories, such as theSU(5) theory, we place the
quark and lepton fields on the same footing when we fill out the field multiplet for the group
representation. From the mass matrix relation we havemd = me, ms = mµ , andmb = mτ at the
unification scale. These relations hold such that the differences of their mass values at the electro-
weak scale are understood as a running effect. In the UED model, due to the power law running
of the Yukawa couplings, the renormalization effect on these relations can be large. In Figs.4 we
present the numerical analysis of the one-loop calculationof the mass ratiosmd/me, ms/mµ , and
mb/mτ respectively.

As illustrated, the mass ratios evolve in the usual logarithmic fashion when the energy is
below 1TeV, 2TeV, and 10 TeV for the three different cases. However, once the first KK threshold
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Figure 4: The evolution of the mass ratio (left panel)md/me, (centre panel)ms/mµ , and (right panel)mb/mτ .

is reached, the contributions from the KK states become moreand more significant, at which point
their running deviates from their normal orbits and begin toevolve rapidly. As observed, the
mass ratios all decrease with increasing energy, which agrees with what is observed in the SM,
however, the mass ratios decrease at a much a faster rate. In the UED model the mass ratios for
the three families have a sizable variation, which is more than 60% across the whole range, and
this is almost twice as great as that of the SM. This is an interesting feature that distinguishes these
two models. Also, a flavor dependent interaction can be introduced to the Yukawa couplings and
this flavor dependence need not be very strong, since the power law effects of RGE can easily
amplify the effects of even a relatively mild flavor dependence [6]. Therefore, due to the fast power
law running the unification of the Yukawa couplings is very desirable, where this feature has the
potential to address the problem of fermion mass hierarchy.

From Eq.(5) it follows that the CKM matrix describing the quark flavor mixing in the charged
current is given byVCKM = UV †, where from Eqs.(4, 6) the RGE of the CKM matrix elements are:

16π2 d
∣

∣Vi j
∣

∣

2

dt
= S(t)

{

3
∣

∣Vi j
∣

∣

2
( fi

2 + h j
2−∑

k

fk
2
∣

∣Vk j
∣

∣

2
−∑

k

hk
2|Vik|

2)−3 fi
2 ∑

k 6=i

1

fi
2− fk

2

(

2h j
2
∣

∣Vk j
∣

∣

2∣
∣Vi j

∣

∣

2

+∑
l 6= j

hl
2Vikl j

)

−3h j
2 ∑

l 6= j

1

h j
2−hl

2(2 fi
2|Vil |

2∣
∣Vi j

∣

∣

2
+ ∑

k 6=i

fl
2Vikl j)

}

, (8)

whereVikl j = 1−|Vil |
2−|Vkl |

2−
∣

∣Vk j
∣

∣

2
−

∣

∣Vi j
∣

∣

2
+ |Vil |

2∣
∣Vk j

∣

∣

2
+ |Vkl |

2∣
∣Vi j

∣

∣

2
.

Since the mixing matrixVCKM satisfies the full unitary conditions, we have the following
constraint

VudV ∗
ub +VcdV ∗

cb +VtdV ∗
tb = 0 , (9)

that is, we have a triangle in the complex plane, composed of three sides with lengths|Vud |
∣

∣V ∗
ub

∣

∣,
|Vtd |

∣

∣V ∗
tb

∣

∣, and |Vcd |
∣

∣V ∗
cb

∣

∣. The areaA is related to the Jarlskog rephasing invariant parameterJ
through the relationJ = 2A. Therefore, we can identify its three inner anglesα , β andγ from the
area and its sides

sinβ =
J

|Vtd |
∣

∣V ∗
tb

∣

∣ |Vcd |
∣

∣V ∗
cb

∣

∣

, sinγ =
J

|Vud |
∣

∣V ∗
ub

∣

∣ |Vcd |
∣

∣V ∗
cb

∣

∣

, (10)

and α = π − β − γ . The shape of the unitarity triangle can be deemed as an important tool to
exploring new symmetries or other interesting properties that give a deeper insight into the physical
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Figure 5: The evolution ofsinβ .

content of new physics models. So it is of great interest to find models in which the CKM matrix
might have a simple, special form at asymptotic energies. InFig. 5 we plot the evolution of the
inner angle from the electroweak scale to the unification scale by using the one-loop RGE for the
UED model, and demonstrate that the angle has a small variation against radiative corrections.

More specifically, the relative deviation for sinβ is only up to 0.01% in the whole range from
MZ to the GUT scale. Similar analysis can also be found for the anglesα andγ . This result makes
sense, since both the triangle’s sides and area become larger and larger when the energy scale
increases, the unitarity triangle (UT) is only rescaled andits shape does not change much during
the RG evolution. The fact that inner angles are rather stable against radiative corrections indicates
that it is not possible to construct an asymptotic model withsome simple, special form of the CKM
matrix from this simple scenario. The stability against radiative corrections suggests that the shape
of the UT is almost unchanged from RGE effects. In this regards, the UT is not a sensitive test of
this model in current and upcoming experiments.

On the other hand, in the quark sector, both the mass ratios and mixing parameters exhibit
rather large hierarchies. At the electroweak scale the observed pattern of fermion masses and
mixings

θ13 ∼
md

mb
, θ23 ∼

ms

mb
, (11)

does not look accidental. In [3] a set of renormalization invariants is constructed

R13 = sin(2θ13)sinh

[

ln
mb

md

]

∼ constant , R23 = sin(2θ23)sinh

[

ln
mb

ms

]

∼ constant . (12)

These invariants exhibit explicitly the correlation between quark flavor mixings and mass ratios
from the electroweak scale to the GUT scale in the context of the SM, the double Higgs Model,
and the Minimal Supersymmetric Standard Model. The well known empirical relations Eq.(11)
at the electroweak scale can thus be understood as the resultof renormalization evolution toward
the infrared point, where the low energy limits will naturally lead to the correlations of Eq.(11).
This suggests that relations between mass ratios and mixingangles are dynamical in origin, where
it is found that the scale dependence of these quantities forgeneral three flavor mixing follows
these invariants up to the GUT scale closely. We quantitatively analyze these quantities in the UED
model from the weak scale to the GUT scale.
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Figure 6: The evolution of the (left panel)R23, and (right panel)R13.

As an exemplary example, we take the input values from [4] andplot their evolution. As
depicted in Fig.6, the energy dependence ofR13 andR23 are weak. Since the increase of the mixing
angles are compensated by the deviation of the mass ratios, the net RGE effect onR13 andR23 is
not considerable; it only counts up to a relative variation of orderλ 4 andλ 5 respectively.

To conclude, UED models with compactification radius near the TeV scale promises exciting
phenomenology for collider physics. It is found that the evolution of the gauge couplings has a
rapid variation in the presence of the KK modes and this leadsto a much lower unification scale
than the SM. As discussed, due to the power law running of the Yukawa couplings, the rapid
decrease of the Yukawa couplings with energy is in clear contrast to the slow logarithmic running
predicted by the SM. The UED model has substantial effects onthe hierarchy between the quark
and lepton sectors and provides a very desirable scenario for grand unification. However, we also
find that the radiative effect on the UT is not great and not a sensitive test of this model, as the UT is
rather stable under the evolution. Finally, to a good approximation, the renormalization invariants
R13 andR23 describe the correlation between the mixing angles and massratios very well, with a
variation no more than the orderλ 4 under energy scaling.
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