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1. Introduction

These proceedings briefly summarise the status of ATLAS, and selected physics highlights,
especially searches, as presented at the EPS-HEP conference in July2011. A large number of
parallel talks and posters from ATLAS presenters are also reported elsewhere in this volume, as
are plenary talks which review ATLAS results in wider contexts, covering electroweak [1], top [2],
QCD [3], heavy ions [4], and LHC Higgs searches [5]. Essentially all results included in these
proceedings were preliminary at the time of the conference, and some are now published (see
references).

2. Data Samples
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Figure 1: Integrated luminosity history in (left) 2010, and (right) 2011 to the date of the conference. Note
log and linear vertical scales, respectively. The luminosity error is±3.4% and±3.7% respectively.

The LHC luminosity delivery in 2010 was characterised by a roughly exponential rise in peak
luminosity, spanning five orders of magnitude over the year (Figure 1). A total of 45 pb−1 was
collected by ATLAS. The year 2011 began with luminosities similar to those at the end of 2010,
and has seen a roughly linear rise in instantaneous luminosity from fill to fill, bythe end of July
reaching 1.75×1033 cm−2s−1, and a “best day” with 63 pb−1. The integrated luminosity collected
is already, by the time of the conference, thirty times larger than in 2010, at close to 1.5 fb−1.
Analysis results presented use up to 1.2 fb−1 of 2011 data.

The most striking change in beam conditions between 2010 and 2011 data-taking has been
the inexorable rise of multiplepp interactions (“pileup”) in both the triggered beam-crossing (“in-
time”) and nearby ones in time (“out-of-time”). The latter affect the data takenprimarily through
the long integration times of the calorimeters. The level of pileup may be coarselycharacterised
by the mean number,µ, of interactions per bunch crossing at a given point in an LHC fill, together
with the bunch spacing, which has been 50 ns in 2011. The distribution ofµ in the early 2011 data
is shown in Figure 2.

The absolute luminosity calibration is the result of several beam-separation (“van der Meer”)
scans, of excellent quality evidencing stable and very close-to-gaussian transverse beam profiles.
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Figure 2: Left: mean number,µ , of interactions per bunch crossing for 2011 data; right: pileup dependence
of luminosity estimators in 2011 data.

The luminosity calibration is transported to physics data-taking using a range of different relative
luminosity measures and devices, illustrated in Figure 2. In 2010 data, a preliminary luminosity
precision in physics of±3.4% is obtained [6]. The increased pile-up in 2011 results in only a small
additional error in 2011, due to the multiple luminosity estimators available for cross-checks, so
that a preliminary uncertainty of±3.7% [7] is used for 2011 analyses to date.

ATLAS’ typical data-taking efficiency is at the∼95% level, and the fraction of operational
channels in different detector systems is at the∼97% level or higher. The LHC experiments have
precipitated a revolution in data handling and fast physics analysis compared to previous genera-
tions of large collider experiments. Data written to disk at the experiment are reconstructed at the
CERN Tier-0 a couple of days later, after a delay to allow calibration and other conditions informa-
tion to be updated based on the data themselves: these calibrations are sufficient for publication-
quality physics analysis. Analysis typically can start around one week after the data are collected,
when a full data quality assessment is complete. Thus results presented here are able to use data
collected until around four weeks before the conference. This also reflects the superb performance
of the Worldwide LHC Computing Grid, WLCG. Figure 3 (left) illustrates this excellent perfor-
mance in terms of the numbers of ATLAS analysis and production jobs run each day across all
Tier-1 and Tier-2 sites. Job totals of around two-thirds of a million a day are achieved.

To date, ATLAS has been able to operate with simple inclusive triggers which facilitate ef-
ficiency measurements from the data themselves: for electrons and muons transverse momentum
thresholdspT > 20 GeV and 18 GeV are deployed as the primary, stable, thresholds for the2011
data collected until the conference. The very sharp efficiency turn-onavailable at the high-level
trigger is illustrated in figure 3 (right). The trigger menu includes a host of trigger signatures,
ranging from primary triggers through to supporting and monitoring triggersrunning at low rates.
The reliable extrapolation of rates to higher luminosities indicates that the effects of pileup are
sufficiently understood at the trigger level.
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Figure 3: Left: total numbers of ATLAS jobs run on the grid, aggregatedacross all Tier-1 and Tier-2 sites,
during the first part of the 2011 running; right: efficiency turn-on curves for 20 GeVpT threshold electron
trigger, at the first, second, and final (event filter) levels.

3. Dibosons and Top

There is no space in this article for a review of ATLAS’ extensive Standard Model measure-
ment programme. However, one highlight from 2011 data at this conference in this area has been
the measurement of massive electroweak diboson production cross-sections. The most precise mea-
surements are made in specific fiducial acceptances, which may be extrapolated to obtain inclusive
WZandZZ cross-sections:

σ tot(WZ) = 21.1±3.1
2.8 (stat)±1.2(syst)±0.9

0.8 (lumi) pb[8]

σ tot(ZZ) = 8.4±2.7
2.3 (stat)±0.4

0.7 (syst)±0.3(lumi) pb[9]

to be compared with Standard Model NLO expectations of 17±1 and 6.5+0.3
−0.2 pb, respectively.

A highlight in the top sector is a measurement of thett cross-section with dilepton events, using
0.7 fb−1 of 2011 data [10]. Combining this with earlier measurements results in a cross-section of:

σ(tt) = 176±5(stat)±13
10(syst)±7(lumi) pb[11].

The precision of this measurement,±8%, challenges the current theoretical uncertainty which is at
the level of 10% [12]. Another analysis [13] has measured the single-topproduction cross-section
in the t-channel with an observed significance of 7.6σ (expected significance 5.4σ ). The result is
consistent with the Standard Model expectation.

4. Beyond the Standard Model

A wide range of searches for new phenomena beyond the Standard Model has been carried out
by ATLAS. In this article, a subset of results on exotic physics searchesare reported which use the
2011 data sample: for the most part these are in relatively simple topologies where a robust analysis
could be done rapidly. Already by the time of the conference major improvements in sensitivity
were possible over results based only on 2010 data. Furthermore, searches for supersymmetry in
the 0-lepton and 1-lepton channels are reported, again using the early 2011 data sample.

4



P
o
S
(
E
P
S
-
H
E
P
2
0
1
1
)
0
0
4

Highlights and searches from ATLAS D.G. Charlton

 [GeV]eem

100 1000

E
ve

nt
s

-210

-110

1

10

210

310

410

510

610 Data 2011
*γZ/

Diboson
tt

W+Jets
QCD
Z’(1000 GeV)
Z’(1250 GeV)
Z’(1500 GeV)

ATLAS

-1 L dt = 1.08 fb∫
 = 7 TeVs

80 200 500 2000
m [TeV]

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

 B
 [p

b]
σ

-310

-210

-110

1 Expected limit

σ 1±Expected 

σ 2±Expected 

Observed limit

SSMZ’

χZ’

ψZ’

ATLAS

 ll→Z’ 
 = 7 TeVs

-1 L dt = 1.08 fb∫ee: 

-1 L dt = 1.21 fb∫: µµ

Figure 4: Left: Invariant mass spectrum of electron pairs in the Z′ →ee search; right: Limits obtained on Z′

production, combining the electron and muon channels [14].

4.1 Exotic Models

Updated results for dilepton searches are illustrated in figure 4: the electron-pair invariant mass
distribution observed with more than 1 fb−1 is shown, together with cross-section limits on Z′-like
(narrow) resonances as a function of mass. Production of a sequential standard model-like Z′ is
excluded at 95% CL with mass below 1.83 TeV, 0.78 TeV above the limit derivedfrom 2010 data.
Further limits on other dilepton resonance models are also available [14]. In addition, an updated
search for particles decaying to an electron and a muon has been performed, placing constraints,
for example, on a straw-man R-parity violating SUSY model [15].
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Figure 5: Left: Transverse mass spectrum of muon and missing transverse momentum in the W′ → µν
search. Right: Limits obtained on W′ production, combining the electron and muon channels [16].

The search for W′ production has similarly been extended with the early 2011 data [16], as
shown in figure 5. Limits on a sequential standard model-like W′ now extend to 2.15 TeV at 95%
CL, when the electron and muon channels are combined, 0.66 TeV higher than from 2010 data.

The search for peaks in the dijet invariant mass spectrum is also updated using 2011 data, as
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depicted in figure 6. The 95% CL limit on the benchmarkq∗ model is increased by 0.76 TeV to
2.91 TeV, updated limits are also placed on axigluon and anS8 colour-octet scalar model, and more
generically on cross-sections for dijet resonances of different widths [17].
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T , observed in selected events with a jetpT > 120 GeV

and|η | < 2, andEmiss
T > 120 GeV; right: The 95% CL lower limits on the 4+n-dimensional Planck scale

MD for different numbers,n, of extra dimensions [18].

In a different combination of high-pT objects, a search for “monojet”-type events has also
been updated with 2011 data [18]. The event topology is that of a high-pT jet recoiling against
little observed activity in the detector, i.e. with missing transverse momentum opposite the jet.
Constraints are placed on the Planck scaleMD in 4+n-dimensions in the ADD extra dimensions
model [19], where an unobserved graviton gives rise to the missing transverse momentum. These
lower limits onMD are shown in figure 7.
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Figure 8: Left: Reconstructedtt invariant mass distribution in the lepton-plus-jets channel [20]; right:
invariant mass of split and filtered subjets in events with a high-pT W → ℓν candidate [21].

A more complex search relying on lepton, jets and missing transverse energyreconstruction is
that fortt resonances. The reconstructed invariant mass distribution of single-lepton tt candidates
is shown in figure 8. Events are observed, already in just 200 pb−1 of data, out to invariant masses
of 2 TeV. Limits are placed on narrow and wide resonance production cross-sections [20]. This
analysis uses standard top reconstruction techniques: looking to the future and more boosted tops,
new techniques will be needed, which will also be important in other search topologies. As an
example, figure 8 also shows the reconstructed mass distribution of split andfiltered subjets in
events with a high-pT W → ℓν candidate (pT > 200 GeV): a rather evident peak from hadronic W
decays is seen [21].

4.2 Supersymmetry

At the time of the conference, ATLAS already had results over a wide spectrum of topologies
for supersymmetric particle production and decay. The bulk of these searches look for signatures
with R-parity conservation: missing transverse momentum being the common signature.

Selecting events with jets, missing transverse momentum and no leptons is sensitive to the
simplest strong production of gluinos and squarks, with decays such as ˜q → qχ̃0

1 and g̃ → qqχ̃0
1 .

The analysis is carried out in four kinematic regions, and the effective mass meff is used as the
discriminating variable in all four cases. It is defined as the scalar sum ofEmiss

T and the selected
jet transverse momenta. Themeff distributions obtained are shown in figure 9, together with the
derived limits in the squark-gluino mass plane, and in the MSUGRA/CMSSMm1/2 vs m0 plane.
A major improvement in sensitivity is evident from the addition of the 2011 data.

Selecting events with jets,Emiss
T , and at least one jetb-tagged by a lifetime algorithm allows

searches to be more sensitive to models in which theb̃1 or t̃1 is the lightest squark [23]. This search
is illustrated in figure 10.
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5. The Latest on the Higgs Search

The current status of LHC Higgs searches is summarised elsewhere in these proceedings [5],
and so here only the most sensitive channels are briefly reviewed. At thismeeting, ATLAS reported
updates with more than 1 fb−1 analysed on the channelsH → γγ [24], H → ZZ(∗) → ℓℓℓℓ [25],
H → ZZ→ ℓℓνν [26], H → ZZ→ ℓℓqq[27], H → WW(∗) → ℓνℓν [28], H → WW→ ℓνqq[29],
WH → ℓνbb andZH → ℓℓbb[30]. Cut-based techniques have been used throughout at this early
stage, to provide robust analyses.

Invariant mass distributions from theH → γγ andH → ZZ(∗) → ℓℓℓℓ analyses are shown in
figure 11. Both channels allow the Higgs boson mass to be reconstructed withgood experimental
precision, but the sensitivities (expected 95% CL limits) at this point are not yet at the level of the
Standard Model cross-section, due to the low branching ratios into these final states.
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Figure 11: Left: Diphoton invariant mass in events selected in theH → γγ analysis [24]; right: Four lepton
invariant mass in events selected in theH → ZZ(∗) → ℓℓℓℓ analysis [25].

The H → ZZ → ℓℓνν channel analysis is more powerful at high mass for Higgs exclusion,
although it lacks such good mass resolution. As indicated in figure 12, this channel on its own
provides a 95% CL exclusion for a range of high Higgs masses: the range340< mH < 450 GeV
is excluded by this channel alone [26].

The H → WW(∗) → ℓνℓν channel is another powerful one for exclusion, also for lowmH ,
however it too does not allow event-by-event determinations of the Higgs mass, because of the
two escaping neutrinos. In this channel the transverse mass distribution ofthe leptons and missing
transverse momentum is formed (see figure 13), and a slice 0.75mH < mT < mH is selected in
order to derive cross-section constraints for specificmH values [28]. This channel alone excludes
production of the SM Higgs in the range 142< mH < 186 GeV at 95% CL. It also shows a small
∼ 2σ surplus of events over the Higgs mass range 130-150 GeV: more data andanalysis is required
to understand whether this arises from a fluctuation, mis-estimated backgrounds, or something else.

Putting together all the channels analysed, constraints on the cross-section as a function of
Higgs mass are obtained as shown in figure 14. ATLAS excludes at 95% CLSM Higgs production
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Left: Zero-jet channel; right: one-jet channel [28].

in the two regions 155-190 GeV and 295-450 GeV [31].

6. Summary

The performance of the LHC in 2011 has been breathtaking, and the ATLAS detector is also
performing very well indeed. A range of measurements and search results are available already
from 2011 data, building on the wealth of physics from the 2010 data. In total, at the time of the
conference, ATLAS had submitted 47 journal papers, and completed 212conference notes. A total
of thirty-five analyses were updated for this conference: ATLAS is pushing deep into unexplored
regions of phase space with both simple and complex search topologies. Theup-to-1.2 fb−1 of
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Figure 14: Constraints on Standard Model Higgs production cross-sections. Top: Comparison of the limits
obtained from different channels; below: Combined limit (solid line) together with the expected limits, and
the expected variation of them (green and yellow bands). Thetwo plots cover differentmH ranges [31].

2011 data analysed by the time of the conference has brought a major increase in new physics
sensitivity compared with 2010.

At this time early in the summer, there was no very significant evidence of Standard Model
Higgs boson production, but thanks to the excellent LHC and ATLAS performance large swathes
of mass were excluded at the 95% CL: specifically the regions 155-190 GeV and 295-450 GeV.
The analysis of the full 2011 data sample promises much.
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