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The hunt for cosmic neutrinos has effectively just started. Recently, large detectors have been
completed and are running, such as IceCube at the South Pole and ANTARES in the Mediter-
ranean sea. Such detectors begin to access the region where neutrino fluxes at energies above
100 GeV are expected from shock and jet acceleration processes in the universe. The expectation
for these fluxes comes from common knowledge on particle interactions and from the observation
of cosmic rays. As a matter of fact, the sources that accelerate cosmic rays are also the power-
ful engines that would produce neutrinos. How efficiently this production occurs depends on the
nature of sources and of their surrounding environments. The non observation of cosmic events
is on one side a source of disappointment, on the other side it represents by itself an important
result. If seen in the context of a multi-messenger science, the combination of photon and cosmic

ray experiment results brings invaluable information.
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1. Introduction on neutrino telescopes

Since the times they were discovered at the beginning of last century, cosmic rays (CRs)
have been carriers of large amount of information concerning particle physics, plasma physics
and astrophysics. Despite the relevant amount of measurements we gathered on their spectrum
and composition, we did not yet observe the sites where these particles are created in the Galaxy
and outside it. The study of the universe through CRs is a major topic of ‘Astroparticle Physics’.
This field joins the community of physicists and astronomers and fascinates people and researches
for the diversity of physics items and for the unusual locations where detectors are built. Such
physics items concern fundamental questions on the universe evolution, its constituents, particle
interactions, verification of general relativity, and life science. I will focus here on some selected
topics concerning the search of cosmic sources in Cherenkov neutrino telescopes, large extensive
air shower arrays having being covered elsewhere at this conference [1]. Indirect dark matter
detection in IceCube and ANTARES were covered at this conference in [2, 3]. This topic is of high
interest also in view of the fact that current LHC limits are pushing new physics in the high energy
region, where indirect detection is competitive with respect to direct measurements.

The South Pole, where the first cubic-kilometer telescope IceCube is located, is a special
observation site since the same view of the sky can be enjoyed at all hours. IceCube was completed
during the austral summer 2010-11 and measures since April 2011 a muon rate of ~ 2.7 kHz.
At the time of writing, fall 2011, the running lifetime is 99%. The completion of IceCube on
schedule [4] and the operation of ANTARES in the Mediterranean sea in its final configuration
since May 2008 [5] are two important milestones for neutrino astronomy. Currently, there is high
momentum in the European community for the construction of a detector in the Mediterranean
sea of better sensitivity than IceCube for galactic sources [6]. The IceCube Observatory is an
ensemble of detectors composed by: a cubic-kilometer neutrino telescope deep in the ice sensitive
to neutrinos with E, = 100 GeV; the extensive air shower array IceTop and the recently added
DeepCore [7], a denser array with the aim of improving the performance at energies < 1 TeV for
dark matter, neutrino oscillation and SN collapse neutrino searches. The deep ice hosts 5160 optical
modules, glass spheres enclosing 10-inch photomultipliers (PMTs) and associated electronics for
waveform digitization. These Digital Optical Modules (DOMs) are autonomous small computers
that communicate with the surface laboratory. The time and the amount of photons that reach the
ns-precision DOMs make the reconstruction of particle direction and energy possible. After almost
7 years from the installation of the first string, 98.5% of the DOMs are in stable operation. IceTop is
composed of stations of 2 tanks of frozen water seen by 2 DOMs separated by about 10 m at the top
of each string. It can be used in coincidence with the deep-ice detector for CR composition studies,
angular and energy reconstruction cross calibrations and to veto background muons produced in
atmospheric showers. A coincident CR induced event through IceTop and IceCube is shown in
Fig. 1 (left).

Occasionally, neutrinos interact with matter in the proximity of the detector or inside its in-
strumented volume. The Earth can be used as a filter to reduce the main background to the neutrino
measurement: atmospheric muons. Upgoing muons are a signature of neutrinos since they are the
only particles that can cross the entire Earth. Since the neutrino cross section increases almost
linearly with energy, at energies above 10° GeV the interaction length becomes comparable to the
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Earth diameter. Hence, only downgoing or horizontal ultra-high energy neutrinos can be detected.
At analysis level atmospheric neutrinos contribute about 200 upgoing neutrino events per day in
the full IceCube. A muon neutrino charged current interaction produces a muon that propagates
through the detector for a distance that depends on energy. A neutrino-induced upgoing muon event
releasing about 10 TeV in the detector and a 50 TeV candidate electron neutrino cascade are shown
in Fig. 1 (left). Electron and tau charged current interactions and all-flavor neutrino neutral current
interactions produce cascade events that have an approximately isotropic distribution of light and
are ‘point-like’ on the scale of the distance between PMTs. Light propagates from the interaction
vertex up to some hundreds of meters. The 1.5 km layer of ice above IceCube reduces the atmo-
spheric muon flux by about 4 orders of magnitude. Further reduction of 2 orders of magnitude
can be obtained using the 3 external rings of strings of IceCube that surround DeepCore and 40
horizontal layers of DOMs above it as veto. Since the ratio between the atmospheric muon and
neutrino fluxes at trigger level in IceCube is about 10°, the veto is effective to reduce backgrounds
to neutrino detection level and to identify neutrinos with vertex contained in the instrumented re-
gion [7]. Using this veto and additional containment and reconstruction quality cuts requirements
allows the measurement of neutrinos produced inside this instrumented region and contained cas-
cade events. Muon events are used for this searches, since their pointing accuracy is ~ 1° as shown
in Fig. I(right). The gain in sensitivity for point-source searches is directly proportional to the
angular resolution squared in an almost background free regime, which applies to time dependent
point-like source searches in IceCube. The pointing capabilities of IceCube are checked using the
Moon shadow that is detected at the level of more than 13¢ with 59 strings of IceCube [8]. Muon
energy is reconstructed thanks to the linear dependency of the muon energy losses in the regime
where stochastic processes dominate over ionization (= 1 TeV). The achieved resolution is of the
order of 0.15-0.2 in log10 of the muon energy between 1 TeV up to about 10° GeV.

2. Discussion on current results for extragalactic and galactic sources

An astronomical messenger has to point back to its cosmic source that sent it to us. Neutrinos
are neutral and so undeflected by magnetic fields in the Galaxy and in the intergalactic space.
Potentially, they are the most sensitive messengers because they are weekly interacting particles and
hence they probe the interior of sources and reach us from cosmological distances. As illustrated
by the well known Hillas’ diagram [9], the maximum energy of an accelerated particle of charge
Ze depends on the size of the accelerating region and on the magnetic field: E,,,, ~ I'ZBR, where I
is the jet Lorenz factor. This simple relationship is obtained from the requirement that the Larmour
radius of accelerated particles is smaller than the acceleration region, but considerations on energy
losses and on the age of the accelerating process have to be accounted for. For instance, gamma-ray
bursts (GRBs) are thought to be efficient accelerators of ultra-high energy cosmic rays (UHECR).
The maximum acceleration energy is compatible with the highest energy events observed by giant
extensive air shower arrays of 10%! eV, such as HiReS and Auger (for a review see [10]). This
has been demonstrated imposing that the duration of the burst is larger than the acceleration time
r%_ > "L and that the energy gained in the acceleration process is larger than the synchrotron energy
loss (tgyn > tace) [11, 12].
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Figure 1: Left: An event detected by IceTop and IceCube in coincidence and two high energy muon and
electron neutrino events. The color code (from red to blue) is proportional to the DOM hit time and the
DOM size is proportional to the deposited charge. Right: Comparison of the point spread function (PSF)
of ANTARES and IceCube-59 strings for muon neutrino events: fraction of events inside the log10 of the
angle between the true neutrino and the reconstructed secondary muon for an E~2 neutrino spectrum. For
ANTARES (IceCube-59) 60% of the events are inside an angle of 0.6° (1°) from a source.

Candidate extragalactic sources of UHECR are GRBs and black hole jets in Active Galactic
Nuclei (AGN). Not only they are efficient accelerators but they also have the right density distri-
bution and power per source that is needed to explain the spectrum of UHECRs. As a matter of
fact, the spectrum and composition of CRs contains information on the nature of cosmic accel-
erators. The all-particle CR flux falls as an approximate power-law in energy with two evident
changes of slope: the knee at ~ Zx few PeV (Z is the charge of nuclei) and the ankle at about
E ~ 4 x 10° GeV. Since the most powerful engines of the universe host intense magnetic fields,
they can be ‘optically thick’. In these sources, protons and nuclei are accelerated and interact in
radiation fields and matter in the source but only neutrinos can emerge. On the other hand, in ‘op-
tically thin’ sources neutrons produced in proton interactions can escape the magnetic fields and
produce both the cosmic rays that we observe in large extensive air shower arrays and the neutri-
nos observed by neutrino telescopes. Hence, there is an intimate relationship between the energy
we observe in the UHECR spectrum and expected neutrino fluxes. From this reasoning, Wax-
man & Bahcall (W&B) derived an upper limit on the diffuse neutrino emission from extragalactic
optically-thin sources from which CRs escape [11]. This upper limit is estimated in the assumption
that UHECRs are protons with £~ injection spectrum and is normalized on the UHECR measured
in large extensive air shower arrays. The CR production rate used in Ref. [11] of E2dN /dE = 10*

erg Mpc— yr~! was recently updated due to the results of HiReS and Auger that superseded the
originally used AGASA data. This produced a decrease of a factor of about 2 in the normalization

[12] to which another factor of 2 of reduction has to be added due to astrophysical neutrino oscil-
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lations. The resulting bound is about 107® GeV cm™2 s~! sr~!. This normalization procedure is

affected by the indetermination of the energy at which extragalactic CRs begin to dominate over
galactic ones between 10'7 — 10!° eV. Moreover, the resulting neutrino flux depends on the compo-
sition of extragalactic CRs, on the maximum energy of the primary injection spectrum and on the
assumed cosmological source evolution. In Fig. 2 (left) the grey band indicates the region between
the revised W&B upper limit [12] to predictions for GRBs [12]. It can be seen that the 90%CL
upper limit of 1/2 of the full IceCube begins to explore the relevant region for steady emissions of
optically-thin sources.

Recent results on GRBs using neutrino-induced muon events for the 40-string configuration
were published in [14] and 59 string data were combined providing considerably better limits
discussed at this conference in [15]. A total of about 300 GRBs were searched for neutrino emission
with complementary analyses that did not find evidence for a signal. In the absence of a signal,
the limits are combined and are a factor 0.22 of the model in [16] that consider neutrino fluxes
for specific bursts. The model in [11], that applies to the average of BATSE GRBs, predicts 14.2
events. Models and upper limits are shown in Fig. 2 (right). Another model independent time scan,
performed over time scales between £10 s and £1 day with looser cuts, would have found 14.5
[16] and 27.7 [11] and measured no events.

The impact of the upper limit of IceCube on fireball predictions is discussed in [15]. For
the case in which GRBs are the dominant sources of CRs, neutrino fluxes can be lowered by
reducing the proton content below the level required to explain the CR spectrum, or the threshold
for pion production can be increased by increasing the boost factor of the shocks, hence reducing
the efficiency of neutrino production. It should be noted that primary protons may not escape the
intense magnetic fields in the fireball. Hence, the CRs observed by giant extensive air showers
could originate from the decay of secondary neutrons from py — AT — nzt that can escape B-
fields. In this second case, the W&B upper limit would be higher by about a factor of 3-6 since the
CR flux is normalized on secondary and not primary nucleons.

If GRBs were the sources of CRs, UHECRs would be proton dominated since nuclei would
not survive in the fireballs. No correlation between UHECRs and neutrino events could be observed
since neutrinos cannot arrive in time-coincidence with protons that would take a much longer time
to reach us. IceCube data provide no evidence for such correlation [8]. The composition measure-
ment and the observation of anisotropies for UHECR and the detection of UHE neutrinos would
help understanding the nature of extragalactic sources. Pure proton or pure iron composition would
produce similar spectral shape in the GZK cut-off region. Nonetheless, if iron dominates, expected
neutrino fluxes from iron photo-disintegration would be orders of magnitude smaller than for pure
proton composition and could be unaccessible to current detectors [10]. Moreover, if the compo-
sition would be dominated by high mass elements anisotropies become improbable unless B-fields
are much lower than what we believe. The EHE search in IceCube for a diffuse flux of neutrinos
selects downgoing and horizontal events with energies > 10% GeV based on the charge released in
the detector as a function of the zenith angle [17]. No event survived the analysis cuts for a livetime
of 333.5 d of the 40 string configuration and upper limits are shown in Fig. 3 (right) together with
some models (references in [17]). The upper limit to the neutrino flux from optically thin sources
[11] modified to include oscillations and including evolution of sources corresponds to 4.5 neutrino
events/yr in 40 strings and 24.5 in 3 yrs of the full detector. The model GZK6, that includes the



Cosmic neutrinos Teresa MONTARULI

R o
_L — atm;;sphﬁnc = 10_8 ‘
7 neutrino Tlux 5 — ICECUBE-40
T 5 1 — == Waxman & Bahcall
. "a -~ IC40 Guetta et al. A
P 3
5\‘1 —— |CECUBE-59 \
E -6 1 g - - 1C59 Guetta et al. '
[S) =—— COMBINED LIMIT [y N
=S W y [y
o > -- 1C40+59 Guetta et al. [ - ' \
@] = i () - » -‘ |
>~ ANTARES arXiv:1011.3772 O, ! L .
~ 11011, 9 N
S 10 g g Lo
= ‘Waxman & Bahcall BN o e v \
N -8 I = . N
N ~ ) g RS
= N O N
5 o ¥ L VN
= 9 ST L iy
- 4 5 7
. : , - 10 10 10° 10
3 6 9 12 15 E [GGV]
log(£/GeV) v

Figure 2: Left: 90% c.l. upper limits on the diffuse muon neutrino flux of E~2 neutrinos for ANTARES
[5] and 40-strings of IceCube [13] and a prediction for the full IceCube. The horizontal band represents
the region between the revised W&B upper limit and the region relevant for GRB fluxes and the oblique
band atmospheric neutrinos. Right: The 90% c.l. upper limits on the muon neutrino flux from GRBs are
shown with solid lines while models with dashed ones. Diffuse fluxes are obtained from fluences of all the
considered bursts assuming a total of 667 uniformly distributed bursts per year. Two models are shown from
[16] calculated for the bursts happened during the 40 and 59 string data takings. The W&B prediction is
shown too [11] (dashed curve that extends to lower energies). The lowest of the upper limits (solid black
line) is the combined one for 40+59 strings.

constraints from the Fermi-LAT diffuse gamma flux and the UHECR as measured by HiReS and
Auger, would produce 4.8 events in 3 years of the full detector. A radio detector for ultra-high
energy neutrinos (> 10'7 eV), ARA, is now under test and a proposal for a 100 km? radio detector
is submitted [18].

Other searches dedicated mainly to AGN flares have been developed in IceCube [19, 8] and
ANTARES [5] to look for flares in coincidence with other X-ray or gamma detectors, such as
Fermi and Imaging Cherenkov Telescopes. None found evidence of correlated neutrino emission.
This ‘triggered’ searches reduce the trial factor by using X-ray and 7y-ray information, but rely
on the assumption that flares of neutrinos are in coincidence with flares in photons as a result
of an enhanced acceleration power in the source. In order not to miss any signal from a flare if
neutrinos are not in coincidence with photons, IceCube also adopt an untriggered approach looking
for clusters of high energy neutrino events in space and time. For a neutrino flare of 1 s (1 day)
the discovery potential is about a factor of 4 (3) better than for time-independent searches [20, 8].
This analysis did not find a significant flare in the data taken with 40 strings [19]. The recently
unblinded results with 59 strings of IceCube revealed a 1.4% significant flare of reconstructed
duration of ~ 10 days with about 14 signal-like events that contributed to this significance. Given
the large trial factor this flare did not reach the threshold required for discovery in IceCube of 50.

Time independent likelihood approaches have been used by ANTARES and IceCube [21, 20,
8] to detect the presence of a signal from any point in the sky among a large background of atmo-
spheric neutrino upgoing events. In this region, the sensitivity for an E~2 flux of neutrinos is peaked
around some tens of TeV. The background is mainly due to atmospheric neutrinos with a few per-
cent contamination of mis-reconstructed atmospheric muons for IceCube and 40% for ANTARES.
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IceCube extended the search to the full sky including the southern sky that is dominated by down-
going atmospheric muons. A zenith-dependent energy cut selects high energy muons to reduce the
high statistics that would prevent the application of the likelihood method. Hence, in the southern
hemisphere IceCube sensitivity is peaked at higher energies between PeV and EeV. The likelihood
approach uses the main features that distinguish signal from atmospheric muon and neutrino back-
grounds: clustering around a direction in the sky and harder spectrum (typically ~ E~2 spectra
are expected for neutrinos directly accelerated in non-relativistic supernova shocks or in relativistic
jets). The technique uses scrambled data samples, since the background is uniform in time and
hence in right ascension and the signal is assumed to be small compared to backgrounds. Since
data and not simulation are used to calculate the background test statistics distribution, the post-
trial p-value for the hottest spot in the sky is solid since it comes from the comparison of the data
outcome to the scrambled data maps. When unblinded, the 40 + 59 string data of IceCube showed
nothing incompatible with the atmospheric backgrounds [8]. The skymap of significances is shown
in Fig. 4 (left). Similar result has been presented by ANTARES: an update of the published result
[21] improved the sensitivity by a factor of 2.5. Fig. 4 (left) shows the average sensitivities and
upper limits as a function of declination for various experiments. IceCube limits are not only chal-
lenging models for extra-galactic sources, but also most optimistic models for galactic sources.
In Fig. 4 (right) we show the case of the Crab Nebula [23], taken as a benchmark to understand
where our limits stand with respect to gamma-astronomy observations. Nonetheless, it for sure
accelerates photons to tens of TeV. IceCube 90% CL limit for the configuration of 40 strings (1/2
of IceCube) is only a factor of 3.4 higher than the luminosity observed in TeV photons by H.E.S.S.
For the Kappes et al. model the IceCube 90% CL limit is a factor of 6 higher (references of models
are in [23]). This model derives from parent protons the gamma spectrum observed by H.E.S.S.
and the muon neutrino one that is reduced by oscillations at Earth by about a factor of two.

In conclusions, these results show that neutrino astronomy has started and that neutrino tele-
scopes are approaching the sensitivity of TeV gamma-astronomy experiments.
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