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1. Introduction

Finding a consistent and predictive UV completion of gnaidt one of the most challenging
tasks in theoretical high energy physics to date. In thiseawdr it soon became apparent that
understanding the theory’s renormalization group (RG) fleay be a crucial ingredient. The em-
phasis is thereby on fixed points (FPs), which could providemsistent UV completion of the
theory within Wilson’s formulation of renormalization. this context, it is natural to distinguish
the following cases: firstly, there may be a Gaussian fixedtg@FP) linked to the free theory.
This is the structure underlying the asymptotic freedom gkegurbatively renormalizable the-
ory. Secondly, the flow may possess non-Gaussian fixed pdi@&Ps) where the corresponding
fundamental action contains interactions. A theory, wHd®ecompletion is provided by such a
NGFP is termed asymptotically safe. Notably, asymptotietganay be as predictive as asymptotic
freedom [1].

Already at a very early stage, it was observed that the UVgetion of the Einstein-Hilbert
action is not given by a GFP, i.e., the perturbative quatitimaprocedure does not lead to an
asymptotically free quantum field theory [2]. In order toaess perturbative renormalizability the
Einstein-Hilbert action was complemented by introducimgrth order operators [3]. This improves
the UV behavior of the theory and the marginal couplings eiased with the four-derivative terms
are asymptotically free at the one loop level [4, 5]. Unfodtely, this improvement comes at the
price of introducing massive negative norm states [6, 7fhabit is commonly believed that higher
derivative gravity is not unitary.

Along a different line Weinberg proposed that gravity cobll asymptotically safe [8]. A
key ingredient in investigating this possibility is the gtational version of the Wetterich equation
[9], which allows to investigate non-perturbative propstof the gravitational RG flow. Since
its advent this tool provided an impressive body of evidetheg gravity indeed possesses a suit-
able NGFP [10]. Recently, these developments have culedniat the proposal of a systematic
algorithm for solving the gravitational functional renalzation group equation (FRGE) using
off-diagonal heat-kernel techniques: the universal RGhmac(URGM) [11].

In the sequel we will rederive the perturbati@efunctions of higher derivative gravity [4, 5]
from the FRGE [9]. Similar studies have been carried out feefd2, 13], where it was observed
that keeping track of the quadratic and quartic divergemessa drastic effect on the fixed point
structure of the RG flow. These contributions shift the fixethpfor Newton’s constant and cos-
mological constant to non-zero values, rendering the thasymptotically safe instead of asymp-
totically free. The main purpose of the present work is thaalestration that the URGM recovers
these results. Surprisingly, the regularization schermimgic to the URGM unveils certain features
in the fixed point structure of the theory, that have not bermrssed before.

2. The flow equation for higher-derivative gravity

In the case of higher-derivative gravity, our ansatz foraerage actiofiy contains all gravi-
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tational interaction monomials with four or less powers @mentum®

M= ‘/‘d4X\/§ |:22k/\k — R+ iCz %

6k
P 3AkR2+A_kE +SFr+ S+ S (2.1)

HereC? = C,,,43CH’?P abbreviates the square of the Weyl tendbr= C2 — 2R, RV + 2R? is
the integrand of the Euler topological invariadt= 1/167G contains the dimensionful Newton’s
constaniG, and all coupling constants are allowed to depend on the Rielsc

In order to consistently quantize the theory, we employ thekground field method to fix
the diffeomorphism invariance, splitting the averagedrioed,, = gyv + hyy into a fixed (but
arbitrary) background metrig,, and fluctuations,,. The gauge-fixing actiofgr is then taken
of the form

Sor=1 / d*%/GF. YR F, 2.2)

whereF, = D"h,,, — nDyhand the bar denotes covariant derivatives with respecetbabkground
metric. Since the gravitational part of the action contd@rsns with up to four derivatives of the
fluctuation fields, we also allow for four derivatives3ag, employing the minimal gauge [5]

YW =271 [g" A+ oPDFDY + VY], (2.3)

whereA = —D? and the gauge parameters are givemby 3142, gP = 1220 angv}'" = RH,
respectively. This choice has the virtue of removing all-nonimal four-derivative terms (as, e.g.,
ADHDV) from the Hessian of the gravitational fluctuations.

This type of higher-derivative gauge-fixing results in twwgt-terms which take into account
the Faddeev-Popov determinant [7]. The oper&pteads to a complex pair of ghostsc with

action

= [ d'xv@e, [Bof — 4728 DD, — R o', (2.4)

while the contribution oV is captured by a third (real) ghost figid
S$=1 / d*xv/@by YH b, . (2.5)

The key ingredient for deriving th8-functions controlling the scale-dependence of the cou-
pling constants contained in the ansatz (2.1) is the FRGEogravitational average action [9]

-1
< ST +%k> d,@k] (2.6)

bl — 1

Here,t = log(k/ko), STr contains a minus sign for Grassmann-valued fieldsdaad{h,.,C,c, b}
and® denote the collection of fluctuation and background fieldspectively. MoreoverZ(p?)

is a (matrix-valued) infrared cutoff which provideskalependent mass term for fluctuations with
momentap? < k2. The interplay between the regulated propagator and tieatiee of the regu-
lator thereby ensures that the trace remains finite for &llegaofk. In constructing the cutoff we
follow the URGM and choosé&Zk in such a way that it provides a mass term to the highest power

IWe shall neglect total derivative terms.
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of the Laplacians appearing in the kinetic terfnss P(A) = A+ Re(A/k?).2 The profile function
is taken aR(p?) = (k2 — p?)0(k% — p?).

Upon substituting the ansatz (2.1), the trace in (2.6) sptito a gravitational and two ghost
parts,& M = T9+T¢+ TP, where

52 rgfaV 1
TgravE%Tr[< ( k +SGF) +%Erav> at%igrav ’

ohdoh
(2.7)
5 - & o
sz—%Tr[<5b§%+%’E> Mﬁ’], T"E—Tr[<5§:+%’£> Mﬁ]-

We shall now evaluate these traces employing the off-dialgbeat-kernel methods advocated in
[15, 11, 16]. In this course, we neglect tkelependence of all coupling constants inside the traces,
which corresponds to the one-loop approximation of the flquegion.

We start with the gravitational trace. Abbreviating paifsymmetric (external) tensor indices
with a single labei, j, i.e.,h; = hyy, etc. and using the variations [7], the part of the actiordgatic

in the metric fluctuations takes the fotiis] &% [ + Sge| = 3h |:KijA2 + Di(jpa) D,Do +V\/.j} hi.
Implementing the prescription of the Type | cutoff detailzbve fixeszy o = Kij (P(2)2 — A?).
In order to proceed further, we note that the matixs easily inverted. Definingv (P9)]i; =
K- Dl(jpa) and[U]'; = [K~Y"W;, the quadratic fluctuations become

52 [%FE“‘H— &SF] = %hi Kil [1”A2_|_V|§p0)5p50 —|—U|j} hi. (2.8)
Since the “interaction vertices? andU are of mass-dimension two and four, respectively, the

inverse of the regulated propagator can be constructedrpatively inU andV. Neglegting all
interactions of mass-dimension six or higher, we obtain

TIRY Ty [%”K] —Tr [U a,;—k?] —Tr {VWV)E“SV‘?;,—EK] T [vW)v(“B)EySVSa Dp a;,—?] . (2.9)

where the trace also contains a summation over internatésdiEvaluating the traces utilizing the
off-diagonal heat-kernel [15, 11] yields

1 .
T [ dtx/B[10¢ 18 (SR 2uH) + R~ R R — BRuuapR"
(2.10)
BRI BRI Ul VI ViV

which encompasses the well-known result for the (cutafependent) four-derivative terms. The
gravitational trace is found by substituting the propedjuated and rather lengthy matridédsand
V of [5].

The inverse (regularized) propagators appearing in thetghacesr ¢ and T have the form

M+ %" = YD) + aDDY + V¥ = 2 +V,, (2.11)

2|n the terminology of [14], this constitutes a cutoff of Type
3At this stage it is consistent to drop all terms containingwv@éives of curvatures, since these do not carry any
information about the flow of the coupling constants coradim the ansatz (2.1).
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whereo is a fixed parameter depending on the couplim@ndV," is an endomorphism propor-
tional to the Ricci tensor. The inverse of such an operatorbeaconstructed explicitly as a power
series of the curvature and endomorphism tensors by getiegathe techniques [17]. At zeroth
order in the curvature, an explicit computation establshe
-1 Y N VY 1

[L@O ] —qu O-DIJD m
The curvature corrections to this expression can be fouddrdoy order in a systematic bootstrap
calculation. Including all terms up t6'(R?) the result is

(2.12)

_
A(P— 0b)
02 ([P, DgDP] + 0D4[DP,A)) ([, DgD"] + 0Dg[DY,A))

(25 10" =26 "u° | " + 0 ([R.DaD"] + 0DalD" )

L (2.13)

P2(P— 0h)2

With this result at hand, it is now straightforward to evadua generic ghost trace of the form
Th=Tr» +V]—1dt,%’|§h. Expanding iV and substituting explicit expressions for the commuta-
tors, the URGM yields

—2/d4x\/§ k*(3—2— Zlog(1-0)) +KR(1+ 3y — £ log(1-0))
—k2V< +20 )+202 log(1— a))—é—é wapRHVOP

+ (WP + 5 — &) RRY + (FWP + 30+ 5) R — (4% + 5¢) RV
e D (s 30 B ]

(2.14)

wherey = 0/(1—-0) andV =V,*. Notably, the universal four-derivative piece agrees with
earlier results on thB, heat-kernel coefficient of the non-minimal differentialeogtor (2.11) (with
R(A) = A), providing an independent verification of earlier res{d{g]. Moreover, one can check
explicitly, that theg-dependence is such that the lingit— 0 is smooth and the resulting trace
reduces to the one for the corresponding minimal diffee¢rtperator. The explicit expressions
for T¢ and TP are then obtained from (2.14) by taking into account the @mjate prefactors and
substituting

—3(1-2w), WBY=RY, o= V=R (2.15)

Combining the three traces (2.7), we obtain the final formhefftow equation
133 196 5
[_ ~ 255 36

K2
- {mp7+ 72(1—2w) P4 — T332 P2IN (5(1+ w))} R (2.16)

148w+ 12w%) R?

7202(1420w) | ZA((4+112)A+K?ps) K'p K'p 2
+ 82 + 600 + 36(1—%&)) + 6(1—2%»)2 In (§(l+ w))

where (also for later purposes), we abbreviated

P = 6— 960 — 48w?, P2 = 65+ 28w+ 8w?, ps = 162— 5400,
Ps = 35— 218w — 35207, ps = —2 — 20w, Ps = 1+ 86w+ 40w?, (2.17)
p7 = 3+ 260 — 4002 .
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3. Perturbative B-functions and their fixed points

The B-functions g,g; = By governing the scale-dependence of the coupling constamts c
tained in (2.1) can then be read off by comparing the coeffisi®f the curvature polynomials
appearing in (2.16). ThB-functions for the marginal couplings are universal in thesg that they
do not depend on the regularization scheme. Explicitly, we fi

— 1 (25+10980+200w?)
(4mZ? 10 - A. (31

= T @mz- 0 Bo=— (4m)?2 60

Despite our quite different computational approach, thsult agrees with earlier computations
[5, 12], giving credibility to the off-diagonal heat-ketnmethods underlying the URGM. The
B-functions governing the running of Newton’s constant dmel ¢cosmological constant are most
conveniently written in terms of the dimensionless quasit = k?/16mZ andA = k—2A:

~ 2 2
Bs =26 — 15525 P71 — n [6(1}2(») Pa— (17%(0)2 p2In (5(1+ w))] ;

S A%(1+200? 3 ry
A= — 2N+ 40(9g13<3w2> + 1271(1(32w)2(p1 +Ap2)n (5(1+ w)) (3-2)

+ﬁ(p3—7\p4)+19fﬂ,(p5+7\p6)-

These are non-universal in the sense that they depend ohdbkercregularization scheme. There-
fore they are expected to differ from the derivation [12]jethemploys the FRGE with a Type IlI
cutoff. In particular, the log-terms in (3.2) are a noveltéga in the Type | cutoff computation.
Their appearance can be traced back to the denomin@prsoA) appearing in (2.12), which are
absent in the spectrally adjusted case.

Owed to their key role for studying the renormalization gdies of a theory, we close with a
discussion of the FRg', (B lg=g: = 0), of the B-functions (3.1) and (3.2). The equatifp(g;) =
0 has the sole solutioh* = 0 and indicates tha vanishes logarithmically at high energies. Thus
the coupling is asymptotically free. The remaining equeion (3.1) give rise to the two (well-
known) fixed point solutions

FPLo: AT=0, 6" =—-171/56, w; » = {—0.00228 —5.47}. (3.3)
Substituting this result into (3.2) we find that only Fédnstitutes a FP of the full system
NGFP : A*=0, 6"=-171/56, w*=—0.00228 A*=039, G"=239. (3.4)

This NGFP is UV-attractive in all five couplings. Similarly the computations [12], including the
guadratic and quartic divergences in the computation oftfienctions has shifted the couplings
A+, G* to finite values, rendering the theory asymptotically safgtdad of asymptotically free.
Investigating the fate of FR we note that the non-universgHunctions are well-defined in the
regionw > —1 only. This bound can be traced back to the requirement ofiytsof the ghost
operator (2.11). Since kRRs not within this bound, it cannot be completed to a FP on thie f
theory space. We take this as a strong indication that thésl fipoint is unphysical.
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4. Conclusion and Outlook

In this paper, we used the exact functional renormalizatjoyup equation [9] in order to
derive the one-loop RG flow of higher derivative gravity hem a novel resummation method
inspired by [17]. The main advantage of this technique isittexpresses functional traces of any
differential operator, in particular higher-derivativedanon-minimal ones, in terms of traces build
from Laplace type operators, that are well known and in gdreasier to compute. Moreover, it
allows for a straightforward extension of the one-loop flovitie non-perturbative one.

Besides the logarithmic singularities seen within dimenal reduction, the functional RG
scheme employed above also takes into account quadratiquamtic divergences in the regular-
ization procedure [12, 13]. The latter give rise to a fundatalecontribution to the flow of Newtons
constant and the cosmological constant, whose UV-behé&vitien governed by a non-Gaussian
fixed point instead of the Gaussian fixed point seen withinedisional regularization. Further-
more, our regularization scheme strongly suggests thatofoilne two known perturbative fixed
points (3.3) for the higher derivative couplings, only oa@hysically viable. The occurrence of a
non-Gaussian fixed point also at the perturbative leveliges/further hints that gravity may be an
asymptotically safe theory.

It would be interesting to study the fate of the NGFP (3.4) m@re elaborate computation
which also takes the feedback of the running coupling cotstappearing on the right-hand-side
of the flow equation into account along the lines [18]. We wilme back to this point in a future
publication [19].
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