

Recent Belle results from $\Upsilon(5S)$ sample

Remi Louvot*

(On behalf of the Belle collaboration)
Laboratoire de Physique des Hautes Énergies,
École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
E-mail: remi.louvot@epfl.ch

The large data sample recorded with the Belle detector at the $\Upsilon(5S)$ energy provides a unique opportunity to study the poorly-known B_s^0 meson. Two analyses, performed with a data sample representing an integrated luminosity of 121 fb⁻¹, are presented: the measurement of the $B_s^0 \to J/\psi \, f_0(980)$ and $B_s^0 \to J/\psi \, f_0(1370)$ branching fractions, and the 5σ observation of the decay $\bar{B}_s^0 \to \Lambda_c^+ \pi^- \bar{\Lambda}$ which is the first observation of a baryonic B_s^0 decay. In addition, we present new results of a measurement of the CKM angle $\phi_1(\beta)$ with $B\pi$ tagged events.

29 October 2011 LPHE Note 2011-04

XXIst International Europhysics Conference on High Energy Physics 21–27 July 2011 Grenoble, Rhône-Alpes, France

*Speaker.

Introduction

The Belle experiment [1], located at the interaction point of the KEKB asymmetric-energy e^+e^- collider, was designed for the study of B mesons produced in e^+e^- annihilation at a center-of-mass (CM) energy corresponding to the mass of the $\Upsilon(4S)$ resonance ($\sqrt{s}\approx 10.58$ GeV). However, a data sample of integrated luminosity $L_{\rm int}=121$ fb⁻¹ has been recorded and analyzed at the energy of the $\Upsilon(5S)$ resonance ($\sqrt{s}\approx 10.87$ GeV), above the $B_s^0\bar{B}_s^0$ threshold.

Apart from the $e^+e^- \to u\bar{u}, d\bar{d}, s\bar{s}, c\bar{c}$ continuum events, the $e^+e^- \to b\bar{b}$ process can produce different kinds of final states involving a pair of non-strange B mesons [2] $(B^*\bar{B}^*, B^*\bar{B}, B\bar{B}, B^*\bar{B}^*\pi, B^*\bar{B}\pi, B\bar{B}\pi, B\bar{B}\pi\pi$ and $B\bar{B}\gamma$), a pair of B^0_s mesons $(B^*_s\bar{B}^*_s, B^*_s\bar{B}^0_s)$ and $B^0_s\bar{B}^0_s$), or final states involving a light bottomonium resonance below the open-beauty threshold [3]. The B^* and B^*_s mesons always decay by emission of a photon. The total $e^+e^- \to b\bar{b}$ cross section at the $\Upsilon(5S)$ energy was measured to be $\sigma_{b\bar{b}} = 302 \pm 14$ pb [4] and the fraction of B^0_s events to be $f_s = \sigma(e^+e^- \to B^{(*)}_s\bar{B}^{(*)}_s)/\sigma_{b\bar{b}} = (19.3 \pm 2.9)\%$ [5]. The dominant B^0_s production mode, $b\bar{b} \to B^*_s\bar{B}^*_s$, represents $f_{B^*_s\bar{B}^*_s} = (90.1^{+3.8}_{-4.0} \pm 0.2)\%$ of the $b\bar{b} \to B^{(*)}_s\bar{B}^{(*)}_s$ events, as measured with $B^0_s \to D^-_s\pi^+$ events [6].

 B_s^0 candidates are fully reconstructed from the final-state particles. From the reconstructed four-momentum in the e^+e^- center-of-mass, $(E_{B_s^0}^*, p_{B_s^0}^*)$, two observables are used to extract the signal yield: the energy difference $\Delta E = E_{B_s^0}^* - \sqrt{s}/2$ and the beam-constrained mass $M_{\rm bc} = \sqrt{s/4 - p_{B_s^0}^{*2}}$. The corresponding branching fraction is then computed using the total efficiency (including subdecay branching fractions) determined with Monte-Carlo (MC) simulations, $\sum \mathcal{E}\mathcal{B}$, and the number of B_s^0 mesons produced via the $e^+e^- \to B_s^*\bar{B}_s^*$ process, $N_{B_s^0} = 2 \times L_{\rm int} \times \sigma_{b\bar{b}} \times f_s \times f_{B_s^*\bar{B}_s^*}$.

1. Study of $\bar{B}_s^0 \to \Lambda_c^+ \pi^- \bar{\Lambda}$

The $\bar{B}_s^0 \to \Lambda_c^+ \pi^- \bar{\Lambda}$ decay is the counterpart if the already-observed $B^- \to \Lambda_c^+ \pi^- \bar{p}$ decay. The study of $B_{(s)}$ baryonic decays is important as the latest observations [7] exhibit a baryon-antibaryon mass peak near the kinematic threshold and tend to have larger branching fractions than two-body decays.

We fully reconstruct the decay via $\Lambda_c^+ \to pK^-\pi^+$ and $\bar{\Lambda} \to \bar{p}\pi^+$. After a fit of the two $\Lambda_{(c)}$ vertices, only \bar{B}_s^0 candidates for which the Λ_c^+ ($\bar{\Lambda}$) invariant mass lies within 100 MeV/ c^2 (4 MeV/ c^2) of the PDG value [5] are retained. The continuum is rejected with requirements on second-to-zeroth Fox-Wolfram moment ratio [8], $R_2 < 0.5$, and the cosine of thrust angle, $\cos \theta_{\rm th} < 0.85$.

A two-dimensional binned fit on M_{bc} and ΔE leads to a first 5.0σ -significant (including systematic effects) observation of 24 ± 7 events (Fig. 1). This is the first observation of a B_s^0 baryonic decay. The measured branching fraction,

$$\mathscr{B}(\bar{B}^0_s \to \Lambda_c^+ \pi^- \bar{\Lambda}) = (4.8 \pm 1.4 (\text{stat.}) \pm 0.9 (\text{syst.}) \pm 1.3 (\Lambda_c^+)) \times 10^{-4}$$

where the uncertainty due to the Λ_c^+ branching fraction is quoted separately, is compatible with that of $B^- \to \Lambda_c^+ \pi^- \bar{p}$ [5].

¹The notation "B" refers either to a B^0 or a B^+ . Moreover, charge-conjugated states are implied everywhere.

Figure 1: M_{bc} (left) and ΔE (right) distributions of the $\bar{B}_s^0 \to \Lambda_c^+ \pi^- \bar{\Lambda}$ candidates (histogram) together with the fit result (solid curve). The dotted curve shows its background component.

2. Study of $B_s^0 \rightarrow J/\psi f_0$

 B_s^0 decays to CP eigenstates are important for CP-violation measurements [9]. The $B_s^0 \to J/\psi f_0$ mode is especially interesting for the hadron-collider experiments because it can be reconstructed from charged tracks only.

The J/ψ candidates are formed with oppositely-charged electron or muon pairs, while f_0 candidates are formed with $\pi^+\pi^-$ pairs. A mass and vertex constrained fit is then applied to the J/ψ candidates. If more than one candidate per event satisfies all the selection criteria, the one with the $M_{\rm bc}$ value the closest to the expected signal mean is selected. The main background is the continuum, which is reduced by requiring $R_2 < 0.4$. The $B_s^0 \to J/\psi$ f_0 signal is fitted using the energy difference, ΔE , and the f_0 mass, $M_{\pi^+\pi^-}$, distributions. Two f_0 resonances, $f_0(980)$ and $f_0(1370)$, are included in the fit.

We obtain a 8.4 σ observation of 63^{+16}_{-10} $B^0_s \to J/\psi \, f_0(980)$ events and the first evidence for $B^0_s \to J/\psi \, f_0(1370)$ with 19^{+6}_{-8} events [10]. We extract the branching fractions $\mathscr{B}(B^0_s \to J/\psi \, f_0(980))$; $f_0(980) \to \pi^+\pi^-) = [1.16^{+0.31}_{-0.19}(\text{stat.})^{+0.15}_{-0.17}(\text{syst.})^{+0.26}_{-0.18}(N(B^0_s))] \times 10^{-4}$ and $\mathscr{B}(B^0_s \to J/\psi \, f_0(1370))$; $f_0(1370) \to \pi^+\pi^-) = [0.34^{+0.11}_{-0.14}(\text{stat.})^{+0.03}_{-0.02}(\text{syst.})^{+0.08}_{-0.05}(N(B^0_s))] \times 10^{-4}$, which are in agreement with other hadron-collider experiments [11].

3. Measurement of $\sin 2\phi_1$ with $B\pi$ tagging

Because the $\Upsilon(5S)$ mass is above the $B^*\bar{B}^*\pi$ threshold, a significant number of $\Upsilon(5S)\to B^{(*)}\bar{B}^{(*)}\pi^\pm$ events are present in the data sample [2]. The sign of the pion indicates whether the event contains a $B^{(*)0}$ ($e^+e^-\to B^{(*)0}B^{(*)-}\pi^+$) or a $\bar{B}^{(*)0}$ ($e^+e^-\to \bar{B}^{(*)0}B^{(*)+}\pi^-$). With B^0 decaying to a CP eigenstate, the asymmetry, $A_{BB\pi}=(N(BB\pi^-)-N(BB\pi^+))/(N(BB\pi^-)+N(BB\pi^+))$, the CKM angle ϕ_1 can be determined via the relation [12]: $\sin 2\phi_1=-\eta_{CP}A_{BB\pi}(1+x^2)/x$, where $x=\Delta m/\Gamma$.

From a clean sample of 75.9 \pm 9.5 fully reconstructed $B^0 \to J/\psi(\to l^+ l^-) K_S^0(\to \pi^+ \pi^-)$ events, we simultaneously fit the missing masses of the $B^0\pi^-$ and $B^0\pi^+$ candidates by adding a charged

Figure 2: $B^0\pi^+$ (left) and $B^0\pi^-$ (right) missing mass distributions for selected $B^0 \to J/\psi K_S^0$ candidates (data points) together with the fit result (solid curve) and its background component (dashed curve).

pion. The fit involves three signal components for the $B^*\bar{B}^*\pi$, $B^*\bar{B}\pi$ (+c.c.) and $B\bar{B}\pi$ classes of events. A total signal of 21.5 ± 6.8 $B^0\pi^\pm$ events is obtained together with the asymmetry $A_{BB\pi} = 0.28 \pm 0.28$ (stat.). While this analysis clearly suffers from lack of statistics, it nevertheless demonstrates that ϕ_1 can be measured by this alternative method.

Conclusion

We presented new results on B_s^0 decays obtained from 121 fb⁻¹ of $\Upsilon(5S)$ data recorded by the Belle detector. While modes with large statistics can provide precise measurements of branching fractions and $B_s^{(*)}$ properties, first observations of several CP-eigenstate B_s^0 decays are a confirmation of the large potential of our $120 \, \text{fb}^{-1} \, e^+ e^- \to \Upsilon(5S)$ data sample and advocate an ambitious B_s^0 program at super-B factories.

References

- [1] A. Abashian *et al.* (Belle Collaboration) *Nucl. Instrum. Methods Phys. Res.*, *Sect. A* **479** (2002) 117. S. Kurokawa and E. Kikutani *Nucl. Instrum. Methods Phys. Res.*, *Sect. A* **499** (2003) 1.
- [2] A. Drutskoy et al. (Belle Collaboration) Phys. Rev. D 81 (2010) 112003.
- [3] K.F. Chen et al. (Belle Collaboration) Phys. Rev. Lett. 100 (2008) 112001.
- [4] A. Drutskoy *et al.* (Belle Collaboration) *Phys. Rev. Lett.* **98** (2007) 052001.
 G.S. Huang *et al.* (CLEO Collaboration) *Phys. Rev. D* **75** (2007) 012002.
- [5] K. Nakamura et al. (Particle Data Group) J. Phys. G 37 (2010) 075021.
- [6] R. Louvot et al. (Belle Collaboration Phys. Rev. Lett. 102 (2009) 021801.
- [7] B. Aubert et al. (BaBar Collaboration) Phys. Rev. D 79 (2009) 112009.
 M.Z. Wang et al. (Belle Collaboration) Phys. Rev. D 76 (2007) 052004.
- [8] G.C. Fox and S. Wolfram, Phys. Rev. Lett. 41 (1978) 1581.
- [9] I. Dunietz, R. Fleischer and U. Nierste *Phys. Rev. D* **63** (2001) 114015.
- [10] J. Li et al. (Belle Collaboration) Phys. Rev. Lett. 106 (2011) 121802.
- [11] R. Aaij *et al.* (LHCb Collaboration) *Phys. Lett. B* **698** (2011) 115. T. Aaltonen *et al.* CDF Collaboration) arXiv:1106.3682v2 [hep-ex] (2011), D0 Collaboration D0 Note 6152 (2011).
- [12] L. Lellouch, L. Randall and R. Sather *Nucl. Phys. B* **405** (1993) 55.