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A variationally optimized perturbation, combined with cemalization group properties, can give
approximations to certain nonperturbative quantities ttke chiral symmetry breaking order pa-
rameters. We evaluate, up to third order in this modifiedypbetion,F,/Ays, whereFy is the
pion decay constant anftj;g the basic QCD scale in tHdSscheme. We obtaLi;r\',r\'ﬂLS:2 ~ 25512
MeV, including rather conservative estimates of theoadtimcertainties of the method. This
compares reasonably well with some recent lattice detextioins.
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In the massless quarks limit, the strong couplirgu) at a given reference scaleis the only
QCD parameter. Equivalently the Renormalization-Group (RG) invariahé sc

_B
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in a specified renormalization scheme, is the fundamental QCD $%al@; (are one- and two-loop
RG beta function coefficients, and ellipsis denote higher RG orderscd:imme)./\',LILS depends on
the number of active quark flavong, with perturbative matching at the quark mass thresholds[1].
Although the presentrs World average is impressively accurate [g(mz) ~ .118+ .001, it
remains of great interest to estima\gs from other observables and other theoretical approaches,
specially to access the infrared QCD regimerfpe= 2(3), where a perturbative extrapolation from
as(mz) is unreliable. Indeed;s determination from Lattice calculations is a very active topics.

Here we explore an alternative determination/\gfs, exploiting the fact that the precisely
known pion decay constafi; should be entirely determined Wy in the strict chiral limit. A
problem, however, is how to calculai@/Ayg in the nonperturbative regime at the relevant scale
close toAys. Moreover, the standarB;,; perturbative series, being proportional to light quark
massesry, vanishes in the strict chiral liming — 0. One can circumvent both problems by a
modification of the ordinary perturbative expansion. The basic idea [2]iigroduce in the stan-
dard QCD Lagrangian a new expansion parameter® < 1, interpolating betweer¥;.e and
ZLnteraction, SUch that the (current) quark masg becomes an arbitrary parameter. It is perturba-
tively equivalent to taking a standard renormalized serigssmas, re-expanded in powers of
after substitution:

my—m(1-9)% g—dg. 2

This procedure is consistent with renormalizability and gauge invarianke.eXtra parametex

in (2) reflects some freedom in the interpolating form, allowing to impose fuphgsical con-
straints. Thed — 1 limit is taken afterd-expansion, to recover the originadasslessheory, but
leaves a remnantrdependence at finité-order, andm is typically fixed by an optimization
(OPT) prescription[3]. The convergence of this procedure, whichle seen as a particular case
of “order-dependent mapping’[4], has been proven[5] for Ehe- 1 A ¢* oscillator. InD > 1
renormalizable models, the lar@eorders behavior is quite involved (see e.g. [6]), but anyhow
the method provides well-defined approximations to certain nonperturloptamities beyond the
mean field approximations. Some previous applications in QCD [7] implied a corrgalicasum-
mation of renormalization group (RG) dependence, not easy to genebaljond the first few
orders. In contrast our recent approach[8, 9] introduces a btfaigvard marriage of OPT and
RG properties. Start from a standard perturbative expansion foysigath quantityP(m,g), after
applying (2) and expanding it at orderk. In addition to the OPT equation:

0
T PM(Mg,6=1)lnen=0, ®)

we require the@-modified) series to satisfies a standard RG equaﬁ%ﬂﬁ: (P(")(m, g,0 = 1)) =0,
where the usual RG operatorfisy; = 1 7; + B(9) 55 — Yin(9) My%. (Our normalization ig8(g) =
dg/dInp = —2bog? — 20193+ -, Yin(9) = Yog+ Y29 + - - - With by, ¥t up to 4-loop given in [10]).
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Combined with Eq. (3), the usual RG equation takes a reduced form:

Pg2+mminngazn:o (4

such that Egs. (4), (3) together completely fix optimized valnesm andg = §.
We now illustrate this concretely on the perturbative series relevant fpidhedecay constant
F;;. Start from the definition of; from the axial current correlator:

i(O]TA, (p)AL(0)|0) = &g F2+ & (pupy) (5)

where the axial current iA‘u = QyuYs4 0, andFy; ~ 92.3 MeV [1]. The perturbative expansion of
(5) in theMSscheme is known up to 4-loop orders [11]:
L0

2 _
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4 1 as
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bt )2[fa0L3 + fa1l® + faol + fag] + 0(ad) | +div (6)

wherel = In%”, and the coefficientdj; are extracted from [11]. One subtlety, however, is that
e.g. in dimensional regularization (6) requires an extra subtraction renorrtiatizaf the form

m? x 1 on dimensional grounds. To obtain a finite RG-invariant expressionuhtsagtion should
be performed consistently with RG properties, and fixing its perturbatipareston at ordek
needs knowing the coefficient of theterm at ordek + 1 [7]. We thus apply to the (subtracted)

Table 1: Combined OPT+RG results at successiverder

d-orderk % L Os
MS
1 0.372+0.161 | —0.45+0.11 | 1.014+0.08i
2 0.353+0.03 | —0.5250.69 | 0.73+0.02
3(s4=PA[1,2)) | 0.341+0.07i | —0.2370.04i | 0.59+0.31i

RG-invariant perturbative series By the procedure (2), at orde®, then solving OPT and RG
Egs.(3), (4). Now the latter being polynomial(ib, g), at increasingd-orders there are (too) many
solutions, most being complex (conjugates). A very natural selection cabrasg by selecting
only the solution matching asymptotically the standard perturbative RG beliavipr— O:

~ ~ H\_1

G(p > M) ~ (2boln =)~". @)
However, to have RG OPT solutions behaving as (7) at&nrgrders, requires a critical value of
ain (2): a= y/(2bp). This connection with RG anomalous dimensions was observed similarly in
other theories, e.gh*in D =3[12, 13].
The RG criteria (7) appears to give unique solutions, given in Table fitH8ge solutions remain
complex (conjugates). Since this is unphysical, we can only expect abteptdutions to have
at least R€j) > 0 and In{F;) < Re(Fy), the imaginary part indicating an intrinsic theoretical
uncertainty. Comparing second and fidsbrders in Table 1, the solution has a much smaller
imaginary part, and R@s decreases to reasonably perturbative values ad-tivéer increases. At
orderd?, the subtraction needs knowledge of the presently unknown 5-looficieef of L, so we
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have estimated it from a Padé ApproximantPA&] from lower orders. Optimal RG solutions are
remarkably stable with respect to such approximations on the 4-loop ordeG truncations, with

at most~ 2-3% differences omrhlgz. In addition we incorporate a more intrinsic error, taking the
range spanned by R&:(g,L)) — Fx(Re&(§), Re(L)), as this tends to maximize the uncertainty for
increasing Ingg,L). Clearly the occurrence of complex solutions is the main source of thedretica
uncertainties, and we adopt in this way a conservative estimate of thebestimes. Finally we

can subtract out the explicit chiral symmetry breaking effects from smalhy # 0. DenotingF

as theF;; value in the chiral limitm,,my — O, Lattice calculations recently obtained [1&};/F ~
1.07340.015, which we take into account in the firigwﬁgz numerical value. With all theoretical
uncertainties (linearly) combined we thus obtain:

Nr=? ~ 255+ 15" MeV (8)

where the central value corresponds ta6j, L), the first errors include higher order aRg)/F
above mentioned uncertainties, and the upper bound correspoRg&Re(§), Re(L)). This com-

pares reasonably well with different kinds of lattice calculations [158 (S¢for a discussion).

In conclusion, a straightforward implementation of RG properties within a vamizitio
optimized perturbation givey;s values, with a remarkable stability at successive perturbative
orders. In principle one could extrapolateag(u) at high (perturbative) scale. Now, since our
RG-improved OPT modifies perturbative expansions, it should also loecossistently to
extrapolate to higher scales, which can differ substantially from a stapésturbative
extrapolation. We therefore leave for future work a precise determinatiag(mz),
incorporating also explicit chiral symmetry breaking effects in this framkwor
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