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A variationally optimized perturbation, combined with renormalization group properties, can give

approximations to certain nonperturbative quantities like the chiral symmetry breaking order pa-

rameters. We evaluate, up to third order in this modified perturbation,Fπ/ΛMS, whereFπ is the

pion decay constant andΛMS the basic QCD scale in theMSscheme. We obtainΛnf =2

MS
≃ 255+40

−15

MeV, including rather conservative estimates of theoretical uncertainties of the method. This

compares reasonably well with some recent lattice determinations.
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In the massless quarks limit, the strong couplingαS(µ) at a given reference scaleµ is the only
QCD parameter. Equivalently the Renormalization-Group (RG) invariant scale

Λnf

MS
≡ µe

− 1
β0αS(β0αS)

−
β1

2β2
0 (· · ·) , (1)

in a specified renormalization scheme, is the fundamental QCD scale (β0, β1 are one- and two-loop
RG beta function coefficients, and ellipsis denote higher RG orders corrections).Λnf

MS
depends on

the number of active quark flavorsnf , with perturbative matching at the quark mass thresholds[1].
Although the presentαS World average is impressively accurate [1]:αS(mZ) ≃ .118± .001, it
remains of great interest to estimateΛMS from other observables and other theoretical approaches,
specially to access the infrared QCD regime fornf = 2(3), where a perturbative extrapolation from
αS(mZ) is unreliable. IndeedΛMS determination from Lattice calculations is a very active topics.

Here we explore an alternative determination ofΛMS, exploiting the fact that the precisely
known pion decay constantFπ should be entirely determined byΛMS in the strict chiral limit. A
problem, however, is how to calculateFπ/ΛMS in the nonperturbative regime at the relevant scale
close toΛMS. Moreover, the standardFπ perturbative series, being proportional to light quark
massesmq, vanishes in the strict chiral limitmq → 0. One can circumvent both problems by a
modification of the ordinary perturbative expansion. The basic idea [2] isto introduce in the stan-
dard QCD Lagrangian a new expansion parameter 0< δ < 1, interpolating betweenL f ree and
Linteraction, such that the (current) quark massmq becomes an arbitrary parameter. It is perturba-
tively equivalent to taking a standard renormalized series ing≡ 4παS, re-expanded in powers ofδ
after substitution:

mq → m(1−δ )a, g→ δ g . (2)

This procedure is consistent with renormalizability and gauge invariance. The extra parametera
in (2) reflects some freedom in the interpolating form, allowing to impose furtherphysical con-
straints. Theδ → 1 limit is taken afterδ -expansion, to recover the originalmasslesstheory, but
leaves a remnantm-dependence at finiteδ k-order, andm is typically fixed by an optimization
(OPT) prescription[3]. The convergence of this procedure, which can be seen as a particular case
of “order-dependent mapping”[4], has been proven[5] for theD = 1 λφ4 oscillator. InD > 1
renormalizable models, the largeδ -orders behavior is quite involved (see e.g. [6]), but anyhow
the method provides well-defined approximations to certain nonperturbativequantities beyond the
mean field approximations. Some previous applications in QCD [7] implied a complicated resum-
mation of renormalization group (RG) dependence, not easy to generalizebeyond the first few
orders. In contrast our recent approach[8, 9] introduces a straightforward marriage of OPT and
RG properties. Start from a standard perturbative expansion for a physical quantityP(m,g), after
applying (2) and expanding inδ at orderk. In addition to the OPT equation:

∂
∂ m

P(k)(m,g,δ = 1)|m≡m̃ ≡ 0 , (3)

we require the (δ -modified) series to satisfies a standard RG equation:µ d
dµ

(

P(k)(m,g,δ = 1)
)

= 0,

where the usual RG operator isµ d
dµ = µ ∂

∂ µ +β (g) ∂
∂g − γm(g)m ∂

∂m. (Our normalization isβ (g)≡
dg/d ln µ =−2b0g2−2b1g3+ · · ·, γm(g) = γ0g+ γ1g2+ · · · with bi , γi up to 4-loop given in [10]).
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Combined with Eq. (3), the usual RG equation takes a reduced form:
[

µ
∂

∂ µ
+β (g)

∂
∂g

]

P(k)(m,g,δ = 1) = 0 (4)

such that Eqs. (4), (3) together completely fix optimized valuesm≡ m̃andg≡ g̃.
We now illustrate this concretely on the perturbative series relevant for thepion decay constant

Fπ . Start from the definition ofFπ from the axial current correlator:

i〈0|TAi
µ(p)A

j
ν(0)|0〉 ≡ δ i j gµνF2

π +O(pµ pν) (5)

where the axial current isAi
µ ≡ q̄γµγ5

τi
2 q, andFπ ∼ 92.3 MeV [1]. The perturbative expansion of

(5) in theMSscheme is known up to 4-loop orders [11]:

F2
π = 3

m2

2π2

[

−L+
αS

4π
(8L2+

4
3

L+
1
6
)+(

αS

4π
)2[ f30L

3+ f31L
2+ f32L+ f33]+O(α3

S)

]

+div (6)

whereL ≡ ln m
µ , and the coefficientsfi j are extracted from [11]. One subtlety, however, is that

e.g. in dimensional regularization (6) requires an extra subtraction renormalization, of the form
m2×1 on dimensional grounds. To obtain a finite RG-invariant expression this subtraction should
be performed consistently with RG properties, and fixing its perturbative expansion at orderk
needs knowing the coefficient of theL term at orderk+1 [7]. We thus apply to the (subtracted)

Table 1: Combined OPT+RG results at successiveδ -order

δ -orderk F(k)
π (m̃,g̃)

ΛMS
L̃ α̃S

1 0.372±0.16i −0.45±0.11i 1.01±0.08i

2 0.353±0.03i −0.52∓0.69i 0.73±0.02i

3 (s4 = PA[1,2]) 0.341±0.07i −0.23∓0.04i 0.59±0.31i

RG-invariant perturbative series forFπ the procedure (2), at ordersδ k, then solving OPT and RG
Eqs.(3), (4). Now the latter being polynomial in(L,g), at increasingδ -orders there are (too) many
solutions, most being complex (conjugates). A very natural selection comesabout by selecting
only the solution matching asymptotically the standard perturbative RG behaviorfor g→ 0:

g̃(µ ≫ m̃)∼ (2b0 ln
µ
m̃
)−1 . (7)

However, to have RG OPT solutions behaving as (7) at anyδ k-orders, requires a critical value of
a in (2): a= γ0/(2b0). This connection with RG anomalous dimensions was observed similarly in
other theories, e.g.Φ4 in D = 3 [12, 13].
The RG criteria (7) appears to give unique solutions, given in Table 1. But those solutions remain
complex (conjugates). Since this is unphysical, we can only expect acceptable solutions to have
at least Re(g̃) > 0 and Im(Fπ) ≪ Re(Fπ), the imaginary part indicating an intrinsic theoretical
uncertainty. Comparing second and firstδ -orders in Table 1, the solution has a much smaller
imaginary part, and RẽαS decreases to reasonably perturbative values as theδ -order increases. At
orderδ 3, the subtraction needs knowledge of the presently unknown 5-loop coefficient ofL, so we
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have estimated it from a Padé Approximant PA[1,2] from lower orders. Optimal RG solutions are
remarkably stable with respect to such approximations on the 4-loop order,or RG truncations, with
at most∼ 2-3% differences onΛnf=2

MS
. In addition we incorporate a more intrinsic error, taking the

range spanned by Re(Fπ(g̃, L̃))−Fπ(Re(g̃),Re(L̃)), as this tends to maximize the uncertainty for
increasing Im(g̃, L̃). Clearly the occurrence of complex solutions is the main source of theoretical
uncertainties, and we adopt in this way a conservative estimate of theoretical errors. Finally we
can subtract out the explicit chiral symmetry breaking effects from smallmu,md 6= 0. DenotingF
as theFπ value in the chiral limitmu,md → 0, Lattice calculations recently obtained [14]:Fπ/F ∼

1.073±0.015, which we take into account in the finalΛnf=2

MS
numerical value. With all theoretical

uncertainties (linearly) combined we thus obtain:

Λnf=2

MS
≃ 255±15+25 MeV , (8)

where the central value corresponds to ReF2
π (g̃, L̃), the first errors include higher order andFπ/F

above mentioned uncertainties, and the upper bound corresponds toF2
π (Re(g̃),Re(L̃)). This com-

pares reasonably well with different kinds of lattice calculations [15] (see [9] for a discussion).
In conclusion, a straightforward implementation of RG properties within a variationally

optimized perturbation givesΛMS values, with a remarkable stability at successive perturbative
orders. In principle one could extrapolate toαS(µ) at high (perturbative) scaleµ. Now, since our
RG-improved OPT modifies perturbative expansions, it should also be used consistently to
extrapolate to higher scales, which can differ substantially from a standard perturbative
extrapolation. We therefore leave for future work a precise determinationof αS(mZ),
incorporating also explicit chiral symmetry breaking effects in this framework.
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