PROCEEDINGS

OF SCIENCE

Recent updates of the Control and Configuration of
the ATLAS Trigger and Data Acquisition System

Riccardo Maria BIANCHI*

CERN

On behalf of the ATLAS TDAQ Collaboration”
E-mail: rbianchi@cern.ch

The ATLAS experiment at the Large Hadron Collider at CERN relies on a complex and highly
distributed Trigger and Data Acquisition (TDAQ) system [3] to gather and select particle collision
data at unprecedented energy and rates. The Control and Configuration (CC) system is respon-
sible for all the software required to configure and control the ATLAS data taking. This ranges
from high level applications, such as the graphical user interfaces and the desktops used within the
ATLAS control room, to low level packages, such as access, process and resource management.
Currently the CC system is required to supervise more than 30000 processes running on more
than 2000 computers. At these scales, issues such as access, process and resource management,
distribution of configuration data and access to them, run control, diagnostic and especially error
recovery become predominant to guarantee a high availability of the TDAQ system and minimize
the dead time of the experiment. And it is indeed during the data taking activities that the CC
system has shown its strength and maturity, featuring a great scalability against the always in-
creasing number of software processes in the TDAQ system and implementing several automatic
error recovery procedures in complex and sophisticated scenarios.

This paper gives an overview of the new functionalities and recent upgrades of several CC system
components, with special emphasis on speed and reliability improvements and on optimization of
the user experience during operations.

ATL-DAQ-PROC-2011-031

30 October 2011

@)

The 2011 Europhysics Conference on High Energy Physics, EPS-HEP 2011,
July 21-27, 2011
Grenoble, Rhone-Alpes, France

*Speaker.

"The ATLAS Trigger/DAQ Authorlist, version 4.1, ATL-DAQ-PUB-2011-002, CERN, Geneva,

http://cdsweb.cern.ch/record/1386334.

2011,

(© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/

mailto:rbianchi@cern.ch

Control and Configuration of the ATLAS TDAQ System Riccardo Maria BIANCHI

1. Optimization and New Technologies

The ATLAS experiment is up and running, taking data successfully since more than one year.
The first goal of the TDAQ achieved — that is, recording data from the experiment in a safe and
reliable way — it was time to improve the core packages to optimize the usage of the available
resources; and to explore new technologies, developing ancillary tools to get better system moni-
toring and to help the human operators during the configuration and data-taking operations. Recent
improvements of the ATLAS TDAQ Control and Configuration system (CC in the following) and
additions to it are presented in this paper.

2. Improving Operation timings through parallelization and network usage
optimization

To setup ATLAS in order to take data, we have to go through a Finite-State-Machine (FSM),
up to the “RUNNING” state, configuring all necessary services and applications. Each step is now
optimized to efficiently use CPU and Network resources.

Figure 1 shows the outcome of the recent improvements and optimizations of the mechanism
which configures and runs the ATLAS experiment. In Figure 1(a) one can see the trend of the total
“INITIAL” time. This is the time spent interacting with the underlain operating system, starting
all the services and applications involved in the data acquisition system of the experiment. Once
all applications received the signal, they start; and the whole system goes from the “BOOTED” to
the “INITIAL” state of the FSM. The computer racks of the TDAQ system contain ~30 nodes each,
with a total of ~450 applications running on each rack. Starting all the applications took a lot of
time with the old implementation (blue dots on the graph), showing a quadratic dependence on the
number of instances per node (~ x*). The optimization introduced with the new implementation
(red dots on the graph) reduced the starting time, which is now linearly dependent on the number
of instances per node (~ x).

Figure 1(b) shows the CPU cores occupancy, with the blue line. The first, fourth, fifth and
eight peaks show the CPU load of normal run configuration (the other peaks are from test runs and
so they are not indicative of the normal behaviour). The plot shows that the system is now capable
of using most of the available CPU (more than 50 %) while leaving a safety margin for the extra
work, despite the huge load due to the large size of the full ATLAS configuration. The red line
shows the total memory usage, which is stable over the run, once the configuration is loaded in
memory.

Figure 1(c) shows the total time spent by ATLAS during the various transitions of the FSM,
resulting in a total “cold start” time of ~440 seconds (from booting all the applications, up to
running) and a “stop/start” time of ~200 seconds (from a running state, down to a “STOPPED” state
and then up again). Those are very good values for a so complex system like ATLAS, involving
tens of thousands of applications running on several thousands of machines.

During operations, configuration data and commands have to be sent to many systems and
applications through a dedicated 1Gbit network link, and a recent upgrade of the code let the system
effectively use all the bandwidth available. Figure 1(d) shows the result in term of network usage.
As one can see from the plot, the network is only used during state transitions by the applications

Control and Configuration of the ATLAS TDAQ System Riccardo Maria BIANCHI

involved in the configuration of the data acquisition; with a peak during the “CONFIG” transition,
when the whole ATLAS configuration is served to all clients. Between transitions the resources are
left wholly available to data transfer services.

3. Optimization of the Configuration DataBase access

The run configuration of the ATLAS detector is stored in a custom distributed database. Con-
figuration data have to be promptly accessible, when needed, to all applications which are respon-
sible to run the detector. Bottlenecks have been spotted and a more effective code has been recently
implemented, involving a multi-threaded parallelization of the DB loading, a complete rewriting of
the slowest algorithms and a more effective memory usage. Now the ATLAS configuration can be
concurrently modified by many users at the same time. The reload of the configuration data after
any modification is then centrally managed, to ensure a safe and stable data-taking. Configuration
database Read / Write operations are now ~6 times faster.

4. Automation via Artificial Intelligence: the Shifter Assistant

The ATLAS detector system is operated by a non-expert shift crew, assisted by a set of on-call
experts providing knowledge and assistance for specific components. Operational tasks include
operational procedures to run the system, periodic checks and controls and procedures to notify
experts in case of problems. But computers are better than humans in automation. Hence checks
and controls have been recently automated in order to reduce and simplify shifters tasks with per-
tinent messages and suggestions, providing more detailed information at the same time. Thus —
avoiding repetition and formalizing and storing the knowledge from experts — checks can be more
effective, minimizing system down-time and dealing faster and more effectively with errors and
failures.

The Shifter Assistant uses an open-source Complex Event Processing (CEP) engine from “Es-
perTech”! to process streams of information from several sources in real time, in order to detect
patterns in time windows, and reacting to them producing alerts and messages, served to clients
through the ActiveMQ dispatcher>. The knowledge base is a list of directives and suggestions
whose target is the person sitting at the shifter desk. Figure 6 shows the architecture of the Shifter
Assistant.

5. ELisA, the new interface to the ATLAS operation log messages DB

During operations, when the detector is running, a lot of messages and logs are exchanged
among shifters, experts and automatic services. And a real-time analysis of those messages helps
to spot and understand problems. That’s why the ATLAS experiment needs a reliable fast interface
to the log messages database.

The current implementation, called “ATLOG”, has many major problems, mainly due to its
monolithic architecture, where the same application acts both as server and as web client; this

Uhttp://www.espertech.com
Zhttp://activemq.apache.org

Control and Configuration of the ATLAS TDAQ System Riccardo Maria BIANCHI

makes the package difficult to maintain and deploy. It also lacks of a good Oracle interface and
multi-threading support, resulting to a poor scalability with the number of messages to handle, and
in a quite slow and unstable behaviour.

The new implementation, called “ELisA” (or “Electronic Logbook for the information storage
of ATLAS”) uses the Spring Java® web application framework: a mature, stable framework with
an optimized interface to Oracle. Using such a framework allowed us to adopt a new client-server
architecture implementing a Model-View-Controller design pattern, with web pages dynamically
created using JSP, and the Oracle interface developed through the JDBC package. All this results
in a modern web application, which scales well with the number of messages to handle.

In Figure 3 the comparison between the old and the new implementation is presented. Speed
and scalability tests show that the old application takes a lot of time to fetch and display e-log
data (~ x? in time, where x is the number of messages), putting a huge overhead on top of Oracle
operation time; and it can not handle more than few thousands of entries. While the new application
linearly scales with the number of messages, and it only puts a little overhead on top of the pure
Oracle operation time, letting the whole system to cleanly and easily handle tens of thousands of
entries.

6. DBE: the new Configuration Database editor

The old editor used to edit the ATLAS Configuration database so far, had been conceived and
implemented many years ago upon the Motif graphical libraries*, and it lacks of many features
which one expects to find in modern graphical user interfaces.

The new Configuration editor, called “DBE”, is based on the “Qt” graphical libraries’, and
it has all the features that one could expect from a modern editor, like multi-threaded DB access
for faster page rendering, bunch editing of multiple objects at the same time, Drag&Drop with
type check capability, UNDO/REDO actions and customizable user views with user settings storage.
Moreover it allows Read/Write operations both to remote DB servers and to local database files,
and it has C++ and Python interfaces to let the user develop plugins and scripts to make tests and
to operate on the DB.

References

[1] Giovanna Lehmann Miotto, et al.,“Present & Future of the Configuration Control of the Atlas
TDAQ”, TIPP 2009, Tsukuba, Japan. Nuclear Instrumentation and Methods in Physics Research,
Section A: Volume 623, Issuel, 1 Nov. 2010, Pages 549-551, http://dx.doi.org/10.1016/j.nima.2010.03.066

[2] ATLAS Collaboration, J. Instr. 3 (2008) S08003, 437pp.

[3] ATLAS Collaboration, “ATLAS High-Level Trigger, Data Acquisition and Controls Technical Design
Report”, CERN/LHCC/2003-022, June 2003. See http://cdsweb.cern.ch/record/616089/.

3http://www.springsource.org
“http://www.opengroup.org/openmotif/datasheet.html
Shttp://qt.nokia.com

Riccardo Maria BIANCHI

f the ATLAS TDAQ System

on o,

Control and Configurat

‘wa)sAs DD Ay} Jo a3esn yromiau :(p)

‘souIn) uonIsuen JAS :(9) "$I100 § sowT) ‘100 Yorad 1ad ()T "9'T ‘SIXe-X U} U0 _0(83,, JO an[eA ay) Aq pajuasardar oq pinom NJD S[qe[TeAR [€10} 9} 1By} AOT)OU aSBI[J WSS D))
oy Jo a3esn Kowaw pue peol NdD :(q) -opou 1od Furuuni saouRISUL JO UONIUN] B SB QW) UONISURY TVILINL,, ¢, d9.L004,, :(¥) seourwiojiad uoneradQ Suraoidury : 1 9angigq

()

()

85:/110T
05:2110T
TwiLpior
YELVIOT
9TLYI0T

(ss:unyy) oy

5

10:0v:01
£5:95:0T
SYIOVI0T
LE9VI01
67:9v10T
TTIVI0T
£1:950T
6YiSHIOT
£ESHOT
STSKOL
LTST0T
60:51:0T
10 K0T
£5°Pp0T
STPPIOT
LEDVI0T
6T:HVI0T
TEproL
ET:PP0T
£6IEVIOT
6YIEVIOT

THEVOT

TEEP0T
VEEROL
ITEVOT
B0:EVI0T
00:€v:0T

oz

9IINOONN

dols

1YvIS 914NOD 1009

19559 JOUINS - 1AIS GPI—— 1dJ% JO WINS - 19AIFS I ——

$9402 ¥ + ¥ {52 £0-ndx-bpy-od
49A19S 90y HPrY 21

08
09~
z
2
or W
&
sy s | =
Lo) I 3
3
0 o,
=3
)
3
0z W “—.
2
o I
(o8) amimIeroL— peseioL 00 &
S££0-ndx-bpy-od - O/ }JomiaN suol}jisuel] 13]|043U0)100Y 10} 3n|eA a|qeqo.id ISOAl
@ (®)
(ss:wyy) ot apou / saouelsul 14
FHHIH o s o o o s 0
SRRERE EREE-E 0
'3 T T T 0
a " or
ST o \
0ot 0z
1 \-\
0sT o¢
W §6T ﬁl 00 153 Jaqwiadag M L
At 1 P \
3 9T 0st g [
m - ° 05w
8 00€
= S91 4,
= 09
0s€
pas
0oy 0L
FEEVATS r _l \
m 0st 08
¥ 8L 00§
06

IVILINI <- @310049 ey 43
uoniiyed bval

Control and Configuration of the ATLAS TDAQ System Riccardo Maria BIANCHI

Information Information Processing Results
Gathering ——— Distribution
B — —

A

Shifter Assistant

CEP
Engine

EXPERT Instructions:
Please check this and do that.

LHC

SysAdmins \
TDAQ \

Knlowledge
Base

1ayd3edsip b 3ndY

=

Shifter

Alerts
Archive

Assistant

(@ (b)

Figure 2: Shifter Assistant architecture. (a): Shifter Assistant gathers information streams from various systems
and returns alerts based on patterns found in data. (b): Shifter Assistant uses ActiveMQ dispatcher system to send
notifications and alerts.

Operating time [s]

50
40
30

Oracle operations
—=— ELisA (new appl.)
—e— ATLOG (old appl.)

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
Number of messages to handle

Figure 3: Speed and scalability tests of the ATLAS log message user interface

