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1. Introduction

Microscopically, the nature of the forces holding a nucleus together emgsive at short
distances with a diffuse attractive potential well at larger distances isgmado the forces hold-
ing a drop of water together. It is then natural to expect that the nugjsters will exhibit a
liquid-vapor phase transition just as their atomic and molecular brethren ducroStopically,
there is no way to study a bulk sample of nuclear matter to characterize it inrtteefaghion as
these other analogous systems. As a result, the exact nature of the muates phase diagram is
unknown.

The experimental data that is accessible for the nuclear system comesuotear reactions.
These reactions can range from lower energy that are charactarisdhs of compound nuclear
decays to higher energy where it is more appropriate to talk in terms of multiratation. These
reactions range from collision energies of 6 AMeV to 1 AGeV.

Many signals in such experiments have been used to claim that there is mgbede transi-
tion in nuclear matter. These signals have included studying bimodality andlthnie carve. May
these signals actually be due to the phase transition or not is irrelevant tthibdt none of them
have given rise to a phase diagram of nuclear matter. We have chodedyachister yields as a
means to study the phase transition in hopes of ultimately creating a phaserdjagra

In previous studies, the concepts of thermalization and reducibility have ibeduced to
describe the cluster yields of nuclear reactions [2]. Even though thalgdtysics behind these
nuclear collisions are complex, only a small number of parameters arecheedearacterize the
process. The process of thermalization is how the energy of the collisiastigodted over many

T T T T T
Ar+'"Au, E/A=110 MeV
Ne

X=0 L 4 matoy
X SQY, > 197Au

Xe+Au 2N
_5| E/A=50 Mev

<n.>(Er)

m, [5:4
/ y Joe g
o
ZRE ¢ 73
» % o <3S
Xe+Au R ¢ ] xerau . _ -3 S T J/I/T f 733fijﬂ°
| E/AsSOMeV TSy Qs | E/A=sOMey ; 1073 - L =5l L L !

T o B 250 500 750 1000 1250 250 500 750 1000 1250

B (Mev™") E* (MeV™") B (MeV) E;(MeV)

Figure 1: Left: The average yield as a function of the square root otithesverse energy. The symbols
show experimental data points while the solid lines showdithe data using a Boltzmann form. Right: The
excitation function for carbon (left) and neon (right) esim. The symbols show experimental data points
and the solid curves are Poisson fits. See reference [2] fibrefudetails.
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degrees of freedom of the system whereby generating a temperatufartfenius plot, like those
shown in figure 1, shows that the emission rates of clusters as a functioneo$e temperature
creates a linear plot as expected for a thermal system. Furthermorejbityuis the idea that
the number of large fragments being emitted from the hot source can bebeesin terms of a
one fragment probability. Figure 1 also shows how the probabilities of multipde lkagment
emissions can be parametrized by the one fragment probability. Togethenalization and re-
ducibility show that the clusters emitted from such reactions are thermal artthst.

The task in front of us is to connect these thermal cluster yields, being soimp@ in nature,
to the macroscopic characterization of the system in terms of a phase diddsarg.the physical
cluster model and Fisher’s droplet model [3, 4], we study the clustensdfin the Ising model
and a system interacting through a Lennard-Jones potential. With the dost@ntrations from
simulations, the phase diagrams of the systems can be extracted.

With a connection between the cluster concentrations and the thermodynaialiesof a
system, the peculiarities of the nuclear system need to be considered.tt&irgestem is never
studied as a vapor in direct contact with its coexisting liquid, three detailstodsiconsidered:

1. The finite nature of the liquid drop as opposed to a bulk sample.

2. The presence of the Coulomb repulsion.

3. The fact that the liquid evaporates into a vacuum and not into its coexistpar.

Armed with these considerations, we turn our attention to the data from expésiaed see
that the expected trends are observed. From this data, we can achigy@abof constructing the
phase diagram of nuclear matter.

2. Cluster concentrations of coexisting systems

2.1 Physical cluster model

Cluster models were originally developed to account for the non-ideatenafureal fluids.
The purpose of the physical cluster model is to treat the vapor as angdgalf clusters. As a
result, the following two relations are established for the dengitgnd pressure, of the system
as a function of the cluster concentrations of #zex:

p= ;AnA, (2.1)

p:T;nA. (2.2)

The first equation is true for any partitioning of the system into clusters.s€bend equation is
not trivially true for any partition, and can be seen as the sum over paréasures of an ideal gas
of each cluster size.

These equations also hold the key in relating the microscopic concept tdrsltis the ther-
modynamic variables of pressure and density. The question that remairiiacsuitable theory
to describe the cluster concentrations,



Infinite symmetric nuclear matter phase diagram from lowgyeompound nucleus data.
Luciano Moretto

2.2 Fisher’sdroplet model

Fisher's droplet model is a phenomenological approach to enumeratirguster concen-
trations [3, 4]. Generically, the concentration of a cluster should bel ¢g@Boltzmann factor,
incorporating the change of free ener¥sa, to take a cluster of a given size from the liquid into
the vapor phase:

na = exp[—AFa/T] = exp[—(AEA — TASy) /T]. (2.3)

The change in energE,, is seen to be the energy associated with creating the surface of a cluster:
AEA = CoA°. (2.4)

The relation between this equation and the liquid drop expansion are evidet; is the surface
energy coefficient, and would be 23 for a spherical drop. Since the smaller clusters are not
spherical, strictly speaking, the valueafis allowed to change from this ideal value.
Fisher’s contribution to evaluating the cluster concentrations comes in writthghinge in

entropy,ASa, as follows:
CoA?

—
To better see how this describes the cluster entropies phenomenologioaider the resulting
cluster concentrations using the above two equations:

ASx = log[gp] — TloglA] + (2.5)

Na = QoA ’ exp[—coA" <1 - 1>] ) (2.6)

T T
For a system at the critical point, one expects the cluster concentratioobaie & power law,
which is captured in the above equation. The parameisrseen to be the critical exponent to
describe that power law. The valggis the proportionality constant.
The aspect of the above equation which we take advantage of i& tise parameter. Fitting
the cluster concentrations to Fisher’'s formula gives the critical temperafttine system, and the
phase diagrams can be produced by using equations 2.1 and 2.2.

3. Clustersin model systems

To test the validity of Fisher’s equation for cluster concentrations, weetwo model systems
to study. The phase diagrams of these systems are well understoodyappmach is to see how
well the phase diagrams can be reproduced via the cluster concentrath@nisvo systems are the
Ising model and the Lennard-Jones model.

3.1 Thelsing model

The Ising model is a system of spins confined to a grid which interact witteseaeighbors.
The energy of a given lattice configuration is:

E:—J%ssj—HZs. (3.1)
] |
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The first sum is over all nearest neighbors, dnsl the interaction energy between two spins. The
second sum represents the energy of the spins interacting with an éxtexgaetic field with
strengthH.

Even though this system models the ferromagnetic phase transition, it is deendiated to
the lattice gas model. Specifically, in no external fidll= 0, the system is isomorphic to the
lattice gas at coexistence [5, 6]. Thus the phase transition in the Ising matslizgous to the
liquid-vapor phase transition.

For this study, calculations were performed using the Swendson-Waaogthig [7], a stan-
dard Monte Carlo technique, on a cubic lattice with a linear dimension of 50 Eetgdic bound-
ary conditions were used to minimize the finite size effects. Since we are iefesre in the
nature of the system at coexistence, no external field is used. Therslustee defined by using
the Coniglio-Klein algorithm, dividing the geometric clusters into smaller partitions [8

3.2 TheLennard-Jones model

The Lennard-Jones model is an off-lattice system where the particleadhteith a pairwise

potential of the form:
r —6 r -12
Vi(r) = —4e [(f) - (%) ] . (3.2)

Here,r is the distance between the two particles arahdr,; are the characteristic energy and
distance of the system, respectively.

To study the system at coexistence the Gibbs ensemble method was employedyStem
of 4800 particles was studied. The volume of each phase has a linear @imehsbout 20, ;.
Even though both the liquid and vapor are generated from this processgvweoncerned here with
only the vapor phase. The clusters were defined using Hill's procétidfeRandom momenta are
assigned to each patrticle since the Monte Carlo simulation does not progace th
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Figure 2: Left: Fisher scaling of the cluster concentrations in thegsnodel using equation 3.3. Right:
The phase diagram of the Ising model. The symbols are thadaztt values from Fisher’s theory and the
line is the actual density of the system. [11, 15]
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Figure 3: Left: Fisher scaling of the cluster concentrations in thanaad-Jones model using equation 3.3.
Right: The phase diagram of the Lennard-Jones model. Theagrare the extracted values from Fisher’s
theory and the line is the actual density of the system. [14]

Ising Model Lennard-Jones Model
theoretical values this work theoretical values this work
Tc 4.51152+ 0.00004 [12] 4.52:0.01 1.3120+ 0.0007 [13] 1.368k 0.002
o) 0.639464- 0.0008 0.732: 0.008 0.63946E 0.0008 0.744+ 0.002
T 2.2094- 0.006 2.304+0.08 2.209- 0.006 2.199+ 0.005

Table 1: Extracted parameters from the cluster scaling comparduktadcepted theoretical values.

3.3 Fisher scaling in model systems

Once the cluster concentrations are calculated in the above systems,ritiey/fitdo equation
2.6. A convenient way of plotting the data is by making a Fisher plot. Upomaegement of

equation 2.6, one finds:
na(T) _ oA 1 1
QoA T exp[ T T./| (33)

In plotting the logarithm of the left hand side as a function of the argument afxpenential, all
the data collapses onto one line irrespective of temperature and clusteemumb

Figures 2 and 3 show the Fisher plots generated for both the Ising amaiddedones models,
respectively. Both systems display Fisher scaling. Furthermore, thed@arameters of the fits
replicate the theoretical values of the systems as seen in table 1.

Also shown in figures 2 and 3 are the extracted density-temperature gibgsams using the
sums in equations 2.1 and 2.2. Even though these results are not close tedis@p of more
typical procedures, it is evident that the cluster scaling does indebdatethe diagrams.

4. Nature of the cluster yieldsfrom nuclear reactions

Now that we have shown that cluster scaling can be used to create adigsen, we turn
our attention to the nuclear system. Nuclear reactions do not result in ansgsteoexistence.
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Rather, it is a charged finite system decaying in a vacuum. To relate thergligdtis found in
experimental data to those that would be found in a system at coexisterex ctinsiderations
must be made. First, the finite nature of the liquid drop affects the yields eelatithe infinite
system. The presence of the Coulomb repulsion must be accounted ¢erywsnvant to consider
only the phase diagram arising from the nuclear matter interacting via thg $tnme. Lastly, the
relation between the system decaying into a vacuum is compared to the sysguaililorium with
its coexisting vapor. Once these three topics are addressed, the exyjalidata can be tamed.

4.1 Finitesize corrections

The mesoscopic nature of nuclei make the study of finite size effects immerdtor the
properties of ground state nuclei, these finite size effects are embodiedliguit drop expansion
[16]. In the liquid drop expansion, the binding energy is written as a termrlimiga size and a term
that goes as the size to the two-thirds power. The former is seen to beextgropbulk nuclear
matter, whereas the latter represents the finiteness of the nucleus anelstiiegerof a surface.

To see how the finite size affects the cluster yields, return to equation 2n3tifre theory of
cluster concentrations:

Na = exp[—AFa/T] = exp[—(AEx — TASA) /T]. (4.2)

The AEp andASy were seen to be the change of the respective variable as a clustemagde
from the liquid phase and placed in the vapor. In the case of a bulk samleidf the properties

of the liquid are unchanged, and the change of energy and entrogysarie creation of the
cluster’s surface. In a finite system wily particles in a liquid drop, removing a cluster changes
the size of the drop and hence changes the surface of the drop. sithinge smaller liquid drop,
the “complement”, must be taken into account [17]. The change in enetlgrisfore:

DNEa = Co{A? + (Ag—A)° — AZ). (4.2)

This is the negative Q-value of the reaction, just as would be expectedanouclear decay. The
change in entropy is also affected by the presence of the liquid drop:

AAo—A)
Ao

Collecting the terms together into equation 4.1, the cluster concentrationseraluated for
the case of a vapor in coexistence with a liquid drop:

ASA:—rIog[ ]+°2{AU+(AO—A)“—A3}. (4.3)

C(AA-ANT T e A a0 A (L1
= <AO> exp[ oA+ (oA G} (1 -2 )] (4.4)
In comparison to the bulk system, the vapor is populated with more clusters:
Na(T,Ao) = Na(T) exp(Alsg/T). (4.5)

Here,ny is the cluster concentrations in the bulk, and the presence of the liquid di@phét the
chemical potential of the system relative to the bulk system .

Mg =5 (coeKAo—A)“—AgJ ~Trlog [Af;ﬂ) (4.6)
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As would be expected)usg tends to zero when the liquid drop size becomes large; as the
liquid becomes larger the finite size effects become smaller. These equagatiseatly related to
the Gibbs-Thomson effect of increased vapor pressure in the peesén liquid drop [18].

4.2 Finitesize correction in model systems

To study the complement correction, the two model systems that were us@mlighgto study
Fisher scaling are used again. Unlike the grandcanonical calculatioesimthe case of studying
the bulk coexistence, particle number must be conserved to stabilize a liggd dr

For the Ising model, a canonical Monte Carlo simulation is performed on a latiic@wnear
dimension ofL =25 cells [17]. A relatively small number of the cells are set spin up, ranfgamg
A8=117 toA8=468. Coexistence is studied up to a certain temperature at which a liquidsdrop
no longer stable and the system becomes one homogeneous phase. Sligedtdrop is itself
not part of the vapor, its volume is not included in measuring the clusteeotrations, which are
otherwise measured in the same matter as before.

For the Lennard-Jones model, a microcanonical molecular dynamics simutagerformed
in a spherical container with elastic walls. A constagt600 is used, and various droplet size-
temperature combinations are obtained by varying the energy and corg&@aerAs with the
Ising model, the volume of the liquid drop is identified and excluded from etiaty#he cluster
concentrations.

The results of these two sets of simulations are presented in figure 4. Ttreotfigures show
the Fisher scaling for the bulk system, as discussed in the previous sddsimg the parameters
from the bulk systems, the cluster concentrations from the liquid drop simwaierplotted in the
middle panel. Itis clear the Fisher scaling is not the same, and there is &3 eXctusters relative
to the bulk. The bottom panel then shows the clusters scaled using the complesnected
Fisher scaling from equation 4.4. The cluster concentrations are seerd&sbribed correctly by
the complement correction.

It should be noted that the collapse of the liquid drop data uses the pararfnetarthe bulk
system. This shows how the two systems are connected, and that even tiwidga of a critical
temperature is ambiguous for the case of a finite system, the critical tempesétine infinite
system determines the cluster scaling in the finite system. Furthermore, theerpvecedure can
be performed, where the clusters from the finite system can be fit to therEisimplement relation,
regaining the parameters of the infinite system.

4.3 Coulomb repulsion

The presence of a/t potential, such as the Coulomb repulsion, makes it impossible to de-
scribe a bulk system thermodynamically. This is the reason why we are edngidincharged
nuclear matter. The question is how to handle the Coulomb force which is et in nuclei,
and extract information of the system as if it is not there [19].
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Figure4: Top: Fisher scaling of the cluster concentrations for tfieiile system using equation 2.6. Middle:
Fisher scaling of the cluster concentrations for the systétm a liquid drop using equation 2.6. Bottom:
Fisher scaling of the cluster concentrations for the systétin a liquid drop including the complement
correction using equation 4.4. For all of the plots, the ¢eftrespond to the Ising model and the right to the
Lennard-Jones model.

The Coulomb problem can be separated into three separate problems:

1. The liquid self energy.

2. The vapor self energy.

3. The liquid-vapor interaction energy.

The first problem is solved by use of the liquid drop expansion. The @uulerm in the
liquid drop expansion represents the loss of binding due to the liquid setjyer&ince nuclei are
finite in size in nuclear collisions, the Coulomb term stays finite and can easilybtested from
the the total binding to leave behind the parts characteristic to the strong force

The second problem is a problem for considering a gas of nucleons. théit@oulomb re-
pulsion, the only stable configuration of the vapor would be a vapor of density. Since there
is never a vapor in coexistence with the liquid drop in a nuclear collision, tlislgm becomes
irrelevant. The assumption made is that a cluster emitted from the source immeldiately and
does not interact with any other outgoing cluster. In this respect, the faalphysical vapor in
contact with the liquid drop is not a hindrance, but makes this analysis pmssib

In principle, the third problem is actually not a problem at all. To have ctexi® between
two phases, these phases do not need to be in contact. As long as thetevossgre at the same
temperature and chemical potential, coexistence is guaranteed. Thegere$a surface between
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Figure5: Schematic potential energy curves for cluster emissioh (Aéft) and without (right) the Coulomb
interaction. The only difference between the emission efdluster in the two cases is the presence of an
extra barrier when the Coulomb interaction is present.

the two is irrelevant to the thermodynamic properties of the two independasephAs a result,
there need not be any interaction energy between the two phases tdydgseribe coexistence.

In the hot source generated after a nuclear collision, the Coulomb interactérgy produces
a barrier to cluster emission. This barrier does not change the final eauniilof the system, as
seen in the previous argument, but changes the emission rate. Theagapof clusters can be
cast in terms of transition state theory [20]. Consider the potential energg<shown in figure
5. With no Coulomb, the energy of the system emitting at the surface of theesmuthe same
as the energy of the two being separated at infinity. With Coulomb, this is neddnge, and the
additional energy can be modeled as the interaction energy of two toudhanget! spheres. The
rate of emissionR, is thus modeled by:

RO exp—Bs/T] = exp— (AEsurface— AEcoulomb) / T], (4.7)

where theAE terms represent the barrier created from the two different interactidaesce, the
rates are hindered by a Boltzmann factor of the Coulomb barrier. Dividiisgfdlator from the
observed rates yields the rate that would be expected for the system vithuhamb interaction.

Even though the Coulomb interaction would make it impossible to define the thenamity
variables of the nuclear system, the fact that we can only study finite systakes it possible to
account for the repulsion. In the case of decay from a hot soureartly effect of the Coulomb
interaction is to create a barrier to emission. This hindrance to decay canmitbeddout of the
yields observed, and what remains are the yields of an unchargechsyste

4.4 Emission into a vacuum

Without a coexisting vapor in contact with the liquid, how can the decay rétesiquid drop
in vacuum be associated with the equilibrium concentrations [21]?

To see how this apparent contradiction is resolved, consider the twoirmgmal detection
schemes show in figure 6. Each case represents an enclosed systerfirs{Tis a system in

10



Infinite SK/lmmetric nuclear matter phase diagram from lowgyneompound nucleus data.
Luciano Moretto

vapor
o o ® o .

[ ) detector

Figure 6: Schematic representation of the rate of particles crogbiadiquid-vapor boundary for two dif-
ferent experimental set-ups. It is seen that the outwarddfyparticles from the liquid is identical with or
without the presence of the vapor phase.

coexistence with the top wall of the container being a detector. The detec&sunes the rate at
which particles hit the wall.

The position is irrelevant as long as the pressure and temperature @reoksgpant in the
system. As a result, moving the detector all the way to the surface of the liquidsresthe same
measurement. Thus, the outward flux of particles from the liquid is equal tiuthef particles
from the coexisting vapor hitting the wall.

For an ideal vapor, as the physical cluster model presumes, the ragtiofgs,Ra, impinging
upon a wall is written as:

Ra(T) = na(T) (VA(T)43iny(Va))- (4.8)

Here,na is the equilibrium concentrationy is the velocity of the particle, andi,, is the inverse
cross section. The terwy is of order\/'m, and gj,y is of orderAé/3, whereAg is the mass
number of the hot source.

Another difference between the equilibrated system and a system dgdaigra vacuum is
that the decaying system cools down as it evaporates particles. At fiveultl appear that the
temperature of the system needs to be known for the whole history of theratimn. To avoid
this complication, only the intermediate mass fragments are considered, wigealfanore than
Z = 6. These larger fragments have a large barrier for emission, not orlyodile increase of
surface, but more so because of the Coulomb barrier as discussedgrettieus section. As a
result, the larger fragments are considered to be emitted first, or not at all.

A complete physical picture of the evaporation process is thus made. Adteotlision, the
system quickly equilibrates to a temperature. The resulting hot liquid drop lissenergy through
particle emission. The large fragments are only emitted when the system hasdkisnigial
energy, and their rate of emission is directly related to the coexisting vapoentrations through
equation 4.8. The system then continues its evaporative cooling, buttosteningly emitting only
the smaller mass fragments.

5. Experimental fragment scaling
With the above considerations of cluster scaling and the details of the nagktam, we turn

our attention to the fragment distributions from experimental measurementglefan reactions.
Two types of experiments are used to create the phase diagrams of nmatésr

11
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Reaction Te (MeV)
58N + 12C — 70se 18.4+ 0.3
64Ni + 12C — 76se 18.0+ 0.2
1 AGeV8&Kr + 12C 17.54+ 0.2
1 AGeV13¥La +12C 18.3+ 0.2
1 AGeV1¥7Au + 12C 17.7+ 0.1

1 GeVicm+197Au 17.26+ 0.02

Table 2: Estimates of the critical temperature of nuclear mattenfsix different nuclear reactions.

One type of experiment gives rise to a standard “compound nucleus&eliuclear collisions
are characterized as when the beam and target nuclei fuse into a sgidlegxcited nucleus. The
resulting compound nucleus is easily parametrized by mass number, excitetigy,eand angular
momentum through conservation laws [22].

The other experiments are loosely grouped into what is call “multifragmentdfiédn24, 25,
26, 27, 28, 29, 30, 31, 32, 33]. These experiments are at much higheent particle energies.
As a result, a single compound nucleus is not formed. Rather, the collistakdthe two nuclei
apart, leaving behind a smaller remnant which contains only a small amourd ivfcildent beam
energy. Itis harder to characterize the remnant in the same terms as theuwmhmnucleus, but in
principle they decay in the same fashion. The remnant quickly equilibratescars by means of
evaporating clusters. Similar studies have been performed on suchineept results, however
the Coulomb force and finite size effects were not properly taken intauata4, 25, 34].

Regardless of the means of formation of the highly excited remnant and/@othpound
nucleus, the decay thereafter is all considered in the same formalism. ¥&&eimss characterized
in terms of a mass number, charge, excitation energy, and angular momenhanexditation
energy is transformed into a temperature via the Fermi gas approximatiod/B6l he effects of
angular momentum of the decaying source is also considered. The resiuttey yields are then
analyzed as described in the previous sections. Complete and in depth afeaitsanalysis can
be found in reference [35].

The data from six different reactions (listed in Table 2) and three diffezeperiments were
used and over 500 data points were fit with three (for the compound mwla¢a sets) or four
(for the multifragmentation data sets) free parameters per reaction (thexeomeaverage, nearly
23 data points per free parameter). Charges fromhZg < 25 and excitation energies of 1.08
AMeV < E; < 4.75 AMeV were used in the analysis. Table 2 shows the resuli foom all the
experiments. These values agree with each other to within 3% and givéraatesof the critical
temperature of bulk nuclear matterks= 17.94+ 0.4 MeV. This value agrees well with theoretical
predictions [38, 39, 40, 41, 42].

Plotting the scaled ratio of the yields of a given fragm¥é(i,, A;) as a function of ad&°¢/T
collapses the measured fragment yields for Apyand E; onto a single curve. This is shown in
Figure 7. The curve is, for all intents and purposes, the liquid-vapexistence curve of bulk
nuclear matter since the effects of finite size, the Coulomb force, angular mmend isospin
have all been accounted for and scaled out.

12
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Figure 7: The scaled charged yields from the six different nucleactieas. Over 500 points are collapsed
on a single curve which describes the behavior of bulk nualegiter. Here® is an effective chemical
potential that takes into accounts for the effects of finie,sCoulomb force, angular momentum, and
isospin dependencies. See reference [35] for furtherldetai

6. Thenuclear phase diagrams

With the physical cluster model and the fitting parameters from the experinaattsl the
nuclear phase diagrams can be created. Combining the equations frohy#eapcluster model
and Fisher’s droplet model, the pressure is written as:

1 1
p—T;qu‘TeXp{—cOA“ (T—TC)], (6.1)
and the critical pressure is
Pc = Tc;quir' (6-2)
Likewise, the density is:
1 1
p= ;qul‘TeXp[—cOA" <T - R)] : (6.3)
and the critical pressure is
Pc= EQOAPT- (6.4)
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First, we consider the reduced phase diagrams, where the thermodyraaiaiies are scaled
by the critical values. Since the fits for the experimental data are done wittatibeof cluster

yields, the normalizationp is still unknown. Considering the scaled phase diagrams removes this
complication.

Also, the density of the liquid phase as a function of density is not directly unedsn the
experiments. The only knowledge of the liquid phase is the saturation dehgiycetemperature
from studies of ground state nuclei.

To determine the normalization constant and to construct the liquid brancle afetfisity-
temperature phase diagram, Guggenheim’s relation of the reduced pagiserd is used [43]:

Py

Pc

=1+ dhe +dgeP. (6.5)

In this equation, the upper sign is used for the liquid branch, the lower sfgntise vapor branch,
andp is the critical exponent [3, 4, 6]:

B =—_~=032654+00001 (6.6)

The two parameterd; anddg are system dependent. The reduced phase diagram for the vapor
branch is then fit to these two parameters. The reduced phase diagr#me faquid branch is
then generated by switching the sign as seen in equation 6.5. Furthermomtheduced phase
diagram is created by scaling to the density of saturated nuclear matteo &agrerature. Figure
8 shows the resulting phase diagram. The critical density is found pg £€0.06+ 0.02 A/fm®.

To create the pressure-temperature phase diagram, the normalizatitentdosnd for the

density is used. The resulting critical pressurpds= 0.3+ 0.1 MeV/fm3. Figure 8 also shows the
pressure-temperature phase diagram.

p (MeV/fm?)
=
I

S
I

ﬁTTTTTTTTTWUHHHH
=M m

10

I I I I | I I I I |
0 0 0.05 0.1

" p (A/fm’)

o 5 10 15
T (MeV)

Figure 8: The extracted phase diagrams for bulk nuclear matter. [oft:pressure-temperature coexistence

curve. Right: The density-temperature coexistence cuiee line in the middle represents the average
density of the two phases [35].
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7. Conclusion

This talk summarizes the steps taken to generate the liquid-vapor phaserdizgsalk un-
charged symmetric nuclear matter. Since the typical means of measuring thedyaamic prop-
erties of the nuclear system are not available, new techniques neednphmsyed.

Even though the theory of clustering in a vapor was developed indepeoideuclear physics,
the application to nuclear reactions is relevant. The physical cluster modehjanction with
Fisher’s droplet model is shown to provide enough information to proghese diagrams for a
system.

To show that clustering in a real gas can be used to generate phasamaghne theory is
applied to model systems. Fisher scaling is observed in both the Ising mati¢h@hennard-
Jones model. Furthermore, the scaling can reproduce the phase diajrdrassystems which
have been determined previously through more traditional procedures.

The difference between the environment of a nuclear reaction andrsy/stelirect coexistence
also are considered. The finite size of a nucleus is shown to be taken aaord¢hrough appli-
cation of the complement correction. Further simulations of the Ising model anddrd-Jones
model show the validity of the complement correction.

The presence of the Coulomb repulsion in the nucleus is also discusseticatipn of the
transition state method reveals that the Coulomb interaction affects the dézsapydhe addition
of an energy barrier. Taking the extra barrier into account leaves@iggon of the uncharged
system.

Finally, the lack of a physical vapor in contact with a decaying nuclearceas considered.
The rates of evaporation from the decaying source is seen to be wezhbatween a system with
and without being in contact with its coexisting vapor. Furthermore, the otdscay are directly
related to the concentrations of the clusters in a coexisting system.

With a theory in place for analyzing the experimental data from nucleatioeacthe nuclear
phase diagram is created. Experiments of lower energy collisions creatmgpound nucleus are
easily characterized, making them important in the analysis. Even though agrtiéntation data
is harder to characterize, the theory of cluster yields is the same and isciipplie same way.

The diverse experimental data produce consistent set of paramatdénslé nuclear matter,
which allow us to create the phase diagrams of nuclear matter.
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