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ALICE is the dedicated heavy ion experiment at the LHC. The main purpose of the experiment
is to investigate the properties of strongly interacting matter at extreme energy density where
the formation of the Quark Gluon Plasma is expected. In this regard, heavy flavours which are
produced in the early stage of the collision and coexist with the surrounding medium are espe-
cially relevant. The successful achievement of the heavy-ion program requires also the study of
proton-proton collisions. Besides providing the necessary baseline for nucleus-nucleus collisions,
proton-proton collisions allow to test perturbative QCD in a new energy regime. In ALICE, heavy
flavours are measured through the electron channel and the hadron channel in the central barrel as
well as through the muon channel in the forward muon spectrometer. During the 2010 data taking
period, ALICE has recorded proton-proton collisions at

√
s = 0.9 TeV, 2.36 TeV and 7 TeV and,

Pb-Pb collisions at √sNN = 2.76 TeV. In this contribution, special attention is given to the first
physics results on heavy flavour production in p-p collisions at

√
s = 7 TeV measured with the

ALICE muon spectrometer in the forward region.
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1. Introduction

The LHC (Large Hadron Collider) collided protons at a center of mass energy
√

s = 7 TeV and
lead ions at a center of mass energy per nucleon pair √sNN = 2.76 TeV. This energy which exceeds
the one reached at RHIC for Au-Au collisions by about a factor 14 will provide new insights for
the study of the properties of strongly interacting matter under extreme thermodynamical condi-
tions [1]. One of the most important aspect of this new energy range is the abundant production rate
of heavy quarks (charm and beauty). Expected yields and cross sections of cc̄ and bb̄ pairs calcu-
lated in the framework of perturbative QCD (pQCD) at next-to-leading-order (NLO) are reported
in Table 1 for the 5% most central Pb-Pb collisions at √sNN = 2.76 TeV and for p-p collisions at√

s = 7 TeV (calculated from [2]).

System Ncc̄/event σ NN
cc̄ (mb) Nbb̄/event σ NN

bb̄
(mb)

Pb-Pb (2.76 TeV) 56 2.1 2 0.075
p-p (7 TeV) 0.10 6.9 0.003 0.23

Table 1: ALICE baseline for heavy quark production cross sections and yields in p-p collisions (
√

s = 7
TeV) and in central Pb-Pb collisions (√sNN = 2.76 TeV). For Pb-Pb collisions, nuclear shadowing is included
and binary scaling is applied.

Heavy quarks are produced at early stages of the collision and experience the full evolution of
the medium, thus allowing to investigate their production mechanisms, propagation and hadroniza-
tion in the hot and dense nuclear medium. In addition, the large charm and beauty cross sections
allow to investigate new observables [3, 4] for the study of heavy quark quenching. Theoretical cal-
culations have shown that the ratios of the nuclear modification factor of D (B)-hadrons to that of
light hadrons are promising observables to probe the color charge (mass) dependence of parton en-
ergy loss and the ratio of beauty to charm nuclear modification factor is expected to allow to isolate
the mass dependence of the energy loss. The successful achievement of the heavy ion program re-
quires also the study of p-p, p-A and light A-A systems. Besides providing the necessary baseline
for the study of medium effects in nucleus-nucleus collisions, p-p collisions are of crucial interest
as an important test of QCD in a new kinematic region of unprecedented small Bjorken-x values
down to about 10−5 [5]. Note that pQCD calculations can be used to scale the charm and beauty
cross sections in p-p collisions, measured at

√
s = 7 TeV, to the Pb-Pb nucleon-nucleon center of

mass energy of 2.76 TeV. The measurement of charm and beauty cross sections is also important
for understanding quarkonium production. Finally, it is worth pointing out that the measurement
of the beauty production cross section is mandatory to estimate the contribution of secondary J/ψ
from B-hadron decay to the total J/ψ yield.

Heavy flavours are measured in ALICE with (di)electrons and through the hadronic decay
channel at central rapidities and, with (di)muons at forward rapidities. The LHC delivered its first
proton beams in November 2009 and collided lead ions at √sNN = 2.76 TeV at end of 2010. Proton-
proton collisions have been measured at

√
s = 0.9 TeV,

√
s = 2.36 TeV and

√
s = 7 TeV. First results

obtained in the mid-rapidity region can be found in [6, 7, 8, 9, 10, 11, 12, 13]. In the following, first
results on heavy flavour production in p-p collisions at

√
s = 7 TeV, via single muons measured

with the ALICE muon spectrometer are discussed.
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2. The ALICE muon spectrometer

A detailed description of the ALICE apparatus can be found in [14]. The ALICE detector con-
sists of a central barrel (pseudo-rapidity range: |η |< 0.9) placed in the LEP L3 magnet (B≤ 0.5 T),
a forward muon spectrometer and several small angle acceptance sub-detectors in the forward and
backward pseudo-rapidity regions. Amongst those, the VZERO detector is used in the present anal-
ysis (see sub-section 3.1). It consists of two scintillator arrays placed at each side of the interaction
point and covering 2.8 < η < 5.1 and −3.7 < η < −1.7. The main detectors in the central barrel
are, the Inner Tracking System, the Time Projection Chamber, the Transition Radiation Detector
for electron identification, the Electromagnetic Calorimeter for high momentum photon and elec-
tron measurement and the Time of Flight system for identification of hadrons at high transverse
momentum.

The purpose of the ALICE muon spectrometer is the study of quarkonium production and
heavy flavour production in the (di)muon channel. In addition, the production of weakly interact-
ing probes (Z0 and W± bosons) and low mass resonances (ρ , ω , φ ) is also investigated. The main
design criteria are driven by the requirements that the detector should operate in the high multiplic-
ity environment of central Pb-Pb collisions at √sNN = 5.5 TeV and should reach a mass resolution
of 100 MeV/c2 in the ϒ mass region (M ∼ 10 GeV/c2) in order to resolve the ϒ(1S), ϒ(2S) and
ϒ(3S) states.

The muon spectrometer covers −4.0 < η < −2.5 (polar angular range: 171◦ < θ < 178◦). It
is composed of a passive front absorber made of composite materials (carbon, concrete and steel),
a beam shield, a 3 T·m dipole magnet, five stations of high granularity tracking chambers, each
based on two planes of Cathod Pad Chambers. Finally, two stations of trigger chambers equipped
with two planes of Resistive Plate Chambers each, are located downstream of the tracking system,
behind a 1.2 m thick iron wall. The front absorber and the muon filter wall stop muons with
momentum lower than 4 GeV/c. Most of punch-through hadrons (charged hadrons that penetrate
the front absorber without suffering a hadronic interaction) are stopped in the muon filter. The
trigger system allows to reject background muons from π and K decays by means of a transverse
momentum (pt) cut on single tracks. Low pt (∼ 1 GeV/c) and high pt (∼ 1.7 GeV/c) trigger cuts
have been optimized for the measurement of charmonia and bottomonia, respectively.

3. Measurement of the production of muons from heavy flavour decay in p-p
collisions at

√
s = 7 TeV with the ALICE muon spectrometer

3.1 Experimental conditions and data sample

The ALICE experiment has measured p-p collisions at
√

s = 7 TeV for minimum bias colli-
sions with at least one charged particle in 8 units of pseudo-rapidity (INT1B trigger) and events
with at least one muon in the muon spectrometer (MUS1B trigger) with a transverse momentum
larger than ∼ 0.5 GeV/c. The INT1B trigger requires at least one signal in the Silicon Pixel De-
tector (SPD) or in one of the two VZERO counters placed on both sides of the interaction point, in
coincidence with the two beam counters. The MUS1B trigger requires hits in at least three (out of
four possible) trigger chamber planes. In the bending plane (plane perpendicular to magnetic field),
the track deviation relative to a straight line is computed. By applying a cut on this deviation, one
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can select tracks above a given pt threshold. In the considered data taking period, the pt threshold
is ∼ 0.5 GeV/c

A higher statistics of muon tracks is collected with MUS1B trigger events as compared to the
INT1B trigger events. As shown in Fig. 1, pt and η distributions of muon tracks (selected by a set
of cuts which will be described in what follows) exhibit a same behaviour for MUS1B and INT1B
trigger events, as expected.

Figure 1: Single muon pt (upper panel) and η (lower panel) distributions for MUS1B (blue) and INT1B
(red) trigger in p-p collisions at

√
s = 7 TeV. The ratio of the distributions obtained with the two triggers is

displayed at the bottom of each figure.

The single muon analysis is carried out for MUS1B trigger events while, as it will be discussed
in sub-section 3.4, minimum bias data are used for normalization, only.

The luminosity in ALICE was kept to values of [0.6 - 1.2]·1029 cm−2s−1 in order to keep
the collision pile-up rate in the same bunch crossing below 5%. The alignment of the tracking
chambers, a crucial step for the single muon analysis, has been carried out using the MILLEPEDE
package [15], by analyzing tracks without magnetic field in the dipole. The corresponding resolu-
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tion in the bending plane ranges between 300 µm and 900 µm, depending on η-ϕ position. This
leads to a relative systematic uncertainty on pt measurement of about 2% which limits the pt reach
to 10 GeV/c. This alignment has been improved recently and is now applied to the whole statistics
collected in 2010.

In what follows a sample of about 1.94·106 MUS1B events is used. The corresponding inte-
grated luminosity is 3.49 nb−1. An offline selection has been applied to reduce the beam induced
background from 1% to 0.1%. Moreover, events without a reconstructed primary vertex by the
SPD are rejected from the analysis. Various kinematic cuts have been applied for the track se-
lection: tracks are required to be reconstructed within the acceptance of the muon spectrometer
(−4 < η < −2.5) and to have a polar angle at the end of the front absorber (θabs) ranging from
171◦ to 178◦. Finally, one requires that the track candidate in the tracking system matches the track
reconstructed in the trigger system (this cut will be discussed in next subsection).

3.2 Background subtraction

The measurement of the muon yield from heavy flavour decay is based on the inclusive p t
distribution. The different contributions to this distribution have been identified by means of a
Monte-Carlo simulation using Pythia event generator. They are displayed in Fig. 2. One can
distinguish: muons from charm and beauty decay (red and green histograms), muons from primary
light hadron decay (mainly, π and K decay, blue histogram), muons from the decay of secondary
light hadrons produced inside the front absorber (magenta histogram) and punch-through hadrons
(cyan histogram). Unidentified tracks (brown histogram) correspond to reconstructed tracks which
cannot be associated to the generated ones.

Figure 2: Transverse momentum distribution of reconstructed tracks in the ALICE muon spectrometer
(black histogram) in a minimum bias Pythia simulation of p-p collisions at

√
s = 7 TeV.

The trigger system is very effective for rejecting the hadronic component which is stopped
in the iron wall. Indeed, as illustrated in Fig. 3, the structure evidenced at high DCA (Distance
of Closest Approach: distance between the extrapolated track and the interaction vertex, in the
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plane perpendicular to the beam direction and containing the vertex) is attributed to punch-through
hadrons (upper panel) and is suppressed when applying the matching condition between the track
measured in the muon chambers and the corresponding track in the trigger system (lower panel).

Figure 3: Upper panel: DCA distribution of reconstructed tracks in the ALICE muon spectrometer with-
out requiring the tracking-trigger matching. Lower panel: DCA distribution of reconstructed tracks in the
ALICE muon spectrometer when requiring the tracking-trigger matching. The different sources are shown
on the figures. These results have been obtained from Pythia simulations of minimum bias p-p collisions at√

s = 7 TeV.

The experimental DCA distribution (Fig. 4) exhibits the expected trend without (red his-
togram) and with (blue histogram) the matching between the tracking track and the trigger track
(see simulation results in Fig. 3).

In what follows, we focus on the pt > 2 GeV/c range where the contribution of muons from
secondary light hadrons is small (about 3%). Therefore, the main background source consists of
muons from the decay of primary pions and kaons and amounts to 25% of the total yield. Its
subtraction is based on full Pythia simulations with realistic conditions. The p t distribution of
muons from primary pions and kaons decay from Pythia (tune Perugia0 [16]), as a function of η , is
assumed to be the same as in the data. Then, the normalization (total muon yield over muons from
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Figure 4: Experimental DCA distribution of single tracks reconstructed in the ALICE muon spectrometer,
in p-p collisions at

√
s = 7 TeV. Red (blue) histograms have been obtained without (with) requiring the

tracking-trigger matching.

the decay of primary pions and kaons) is done in the low pt region (0.5 < pt < 1.0 GeV/c) where
this component is dominant.

The systematic uncertainty on background subtraction from the model input and the transport
code (here, Geant3) has been estimated by using different Pythia tuning (ATLAS-CSC [17]) and by
varying the yield of muons from the decay of secondary light hadrons within 100% in the Monte-
Carlo. The resulting systematic uncertainty ranges from 20% to 7% for p t going from 2 GeV/c to
6.5 GeV/c. An additional systematic uncertainty of 20% has been taken into account in order to
cover any other effects.

3.3 Acceptance and efficiency correction

The pt distribution of muons from heavy flavour decay is corrected for acceptance and effi-
ciency by means of simulations modeling the full response of the muon spectrometer. The pro-
cedure is based on the generation of a large sample of charm (or beauty) signals by using a fast
generator of heavy quark pairs based on a parameterization of Pythia calculations. The resulting
pt and η acceptance and efficiency correction is displayed in Fig. 5. It is worth noticing that for
pt > 2 GeV/c the global efficiency is larger than 87%. The systematic uncertainty corresponding
to the sensitivity of the acceptance × efficiency correction on the input p t and η distributions is
smaller than 1% and can be neglected. The main source of systematic uncertainty comes from the
accuracy in modeling the detector and is expected to be smaller than 5%.

3.4 Normalization

In order to get an inclusive production differential cross section of muons from heavy flavour
decay, one needs to normalize the acceptance and efficiency corrected muon yields to the number
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Figure 5: Single muon acceptance× efficiency as a function of pt and η obtained from a realistic simulation
of charm signals. See the text for more detail.

of minimum bias collisions corrected for pile-up, and to multiply by the minimum bias cross sec-
tion (σMB). This cross section is derived from the σV0AND cross section measured with the Van
Der Meer scan method [18], V0AND corresponding to coincidence signals in the two VZERO de-
tectors. The σV0AND/σMB ratio is the percentage of minimum bias events with the L0 trigger input
fired and with V0AND condition. Its value is 0.87 and remains stable within 1% over the analyzed
data taking period. This leads to σMB = 71.4±0.7(stat.)±7.1(syst.) mb 1.

3.5 Experimental results

The production differential cross section of muons from charm and beauty decay as a function
of pt in the acceptance of the muon spectrometer, in p-p collisions at

√
s = 7 TeV is depicted in

Fig. 6 (upper panel). The statistics corresponds to an integrated luminosity of 3.49 nb−1. Statistical
uncertainties are negligible (smaller than the symbols) and systematic errors (boxes) vary from
30% (low pt) to 20% (high pt). The systematic uncertainty on σMB (about 10%, see sub-section
3.4) is not displayed. The various sources of systematic uncertainties that we have considered are
shown, as a function of pt, in Fig. 6 (lower panel). The systematic uncertainty includes:

- alignment: 2 % × pt (blue);

- background subtraction: from 20% to 7% as pt increases from 2 GeV/c to 6.5 GeV/c (red);

- detector response: 5% (green);
1Note that σV0AND has been recently updated and the final value of σMB is 62.3±0.4(stat.)±4.3(syst.) mb.
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- Monte-Carlo description: 20% (magenta).

Finally, the resulting systematic uncertainty (yellow band) is the quadratic sum of the various indi-
vidual contributions.

It is worth mentioning that the pt reach (Fig. 6) is restricted to 6.5 GeV/c due to the limited
statistics in the realistic simulations needed for acceptance and efficiency correction. The data
are compared to Fixed Order Next-to-Leading Log predictions [19] (yellow band, upper panel of
Fig. 6). An overall good agreement between data and model predictions is evidenced within errors.

Figure 6: Upper panel: Inclusive production differential cross section of muons from heavy flavour decay
in p-p collisions at

√
s = 7 TeV (symbols). The results have been obtained in the forward rapidity region

(-4 < η < -2.5); the data are compared to FONLL predictions. Lower panel: Systematic uncertainties as a
function of pt. See the text for more detail.

The analysis of the whole statistics collected in 2010 will allow to extend the p t range to about
20 GeV/c and should allow to separate charm and beauty components by means of a combined fit.
Going further, it should be possible to convert the charm and beauty production differential cross
sections at muon level to the corresponding hadron production differential cross section. This is
described in the next section.
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4. Performance of the ALICE muon spectrometer for the measurement of the
B-hadron and D-hadron production cross sections: simulation results
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Figure 7: B-hadron (upper panel) and D-hadron (lower panel) inclusive production differential cross sections
in p-p collisions at

√
s = 14 TeV for an integrated luminosity of 1.0 pb−1. The results are shown in the

forward region (−4.0 < η < −2.5). See the text for more details.

The performance of the ALICE muon spectrometer for the measurement, via single muons, of
the B (D)-hadron inclusive production differential cross section has been evaluated in p-p collisions
at
√

s = 14 TeV [20, 21] by means of realistic simulations. The principle is first to estimate the muon
yield from heavy flavour decay from the total transverse momentum (pt) distribution as discussed
in section 3. Then, beauty and charm muon components are unraveled via a combined fit which
includes predicted shapes of the different components2 . This done according to: (T −B)× ( f µ

c +

R× f µ
b ). f µ

c and f µ
b are the normalized shape functions for charm and beauty, respectively. T is the

total number of muons after background subtraction, B is the beauty amplitude and R is the ratio of
beauty over charm amplitude. Therefore, one is left with two free parameters R and B. Finally, the

2Note that charm and beauty components have never been disentangled with this method in the past.
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B-hadron and D-hadron production cross sections are determined after corrections for efficiency,
luminosity, branching ratios and decay kinematics by using the method initially developed by the
UA1 collaboration [22]. Figure 7 shows the reconstructed B-hadron (upper panel) and D-hadron
(lower panel) cross sections as a function of pmin

t . The statistics corresponds to an integrated
luminosity of 1.0 pb−1 (t = 106 s, < L > = 1030 cm−2s−1). The measurement of the B-hadron (D-
hadron) cross section can be performed over a large pt range going from about 2 GeV/c to 25 GeV/c
(16 GeV/c) with statistical errors lower than 10% at high pt. The expected systematic uncertainties,
mainly due to the fit assumptions, are about 20%. A similar analysis has been successfully carried
out in the dimuon channel [21] and a nice agreement between the different channels has been
evidenced.

5. Conclusion and outlook

We have presented the first measurement of the inclusive pt-differential production cross sec-
tion of muons from heavy flavour decay in p-p collisions at

√
s = 7 TeV, in 2 < pt < 6.5 GeV/c,

using the excellent capabilities of the ALICE muon spectrometer. Despite the present large un-
certainties, the agreement between data and FONLL pQCD calculations is rather good. We are
presently working at having a better control on the different sources of systematics in order to re-
duce the corresponding uncertainties. These results will provide a very important baseline for the
analysis and understanding of Pb-Pb data. The analysis of the whole statistics recorded in 2010
is ongoing. This will allow to extend the upper limit of the pt range to about 20 GeV/c and to
perform pt-differential measurements in several η bins. We will further separate the charm and
beauty components and measure the production cross sections at the hadron level.

The LHC delivered its first Pb-Pb beams at a center of mass energy per nucleon pair √
sNN

= 2.76 TeV in November 2010. This will open a new era for studying the properties of strongly
interacting matter in extreme conditions of temperature and density. The full analysis of heavy
flavour production in the single muon channel is in progress. The measurement should allow the
study of the central to peripheral ratio (RCP) and nuclear modification factor (RAA).
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