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Figure 1: A sketch of the QCD Phase Diagram, according to the colldlmor&CBM at FAIR [1], it is

usually assumed that the critical point for deconfinemeimtaides with the critical point for chiral symmetry
restoration.

1. Introduction

Our main motivation is to contribute to understand the QCBggtdiagram [1], for finitd and
u. The QCD phase diagram is scheduled to be studied at LHC, RHtCFAIR, and is sketched
in Fig 1. Notice that, after enormous theoretical effortig &nalytic crossover nature of the finite-
temperature QCD transition was finally determined by Y. Aekal. [2], utilizing Lattice QCD
and physical quark, and reaching the continuum extrapolatith a finite volume analysis.

Here we utilize the Coulomb gauge hamiltonian formalism &) presently the only con-
tinuum model of QCD able to microscopically include both adiantiquark confining potential
and a vacuum condensate of quark-antiquark pairs. This Inméble to address excited hadrons
as in Fig. 2, and chiral symmetry at the same token, and weatlgcauggested that the infrared
enhancement of the quark mass can be observed in the exaitgohlspectrum at CBELSA and
at JLAB [3, 4]. Thus the present work, not only addresses tB®@hase diagram, but it also
constitutes the first step to allow us in the future to extérdcomputation of nay hadron spectrum,
say the Fig. 2 computed in reference [3], to finite

Both for the study of the hadron spectra, and for the studyQ@® phase diagram, a finite
quark mass is relevant. In the phase diagram, a finite cugquentk massry affects the position
of the critical point between the crossover at low chemicdéptial 4 and the phase transition at
higher u. Moreover the current quark mass affects the QCD vacuungergansity&’, relevant
for the dark energy of cosmology. This all occurs in the dyitaingeneration of the quark mass
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Figure 2: First calculation of excited baryons with a chiral invatignark model [3].

m(p). While the quark condensatg/y)) is a frequently used order parameter for chiral symmetry
breaking, the mass gap, e. the quark mass at vanishing momentuont0) is another possible
order parameter for chiral symmetry breaking.

Here we address the finite temperature string tension, taekauass gap for a finite current
quark mass and temperature, and the deconfinement andrelsiaiation crossovers. We conclude
on the separation of the critical point for chiral symmetegtoration from the critical point for
deconfinement.

2. Fits for the finite T string tension from the Lattice QCD energy F;

At vanishing temperatur@ = 0, the confinement, due to the formation of chromo-electric
and chromo-magnetic flux tubes as shown in Figs. 3 and 4, canooelled by a string tension,
dominant at moderate distances,

s
V(r) ~ E+V0+ or. (2.1)

At short distances we have the Luscher or Nambu-Gotto Cdulpatential due to the string vi-
bration plus the One Gluon Exchange Coulomb potential, kiewthe Coulomb potential is not
important for chiral symmetry breaking. At finite temperatthe string tensiow (T ) should also
dominate chiral symmetry breaking, and thus one of our at@téps here is the fit of the string ten-
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Figure 3: The fields generated by static hybrid sources, notice howltixeorganizes into fundamental
colour triplet flux tubes.

siong(T) obtained from the Lattice QCD data for the quark-antiquagle £nergy of the Bielefeld
Lattice QCD group, [5, 6, 7, 8, 9].

At finite temperature, the quark, or the quark-antiquarlk feergies, can be computed utiliz-
ing Polyakov loops, as in Fig. 5. The Polyakov loop is a glagrath, closed in the imaginary time
t4 (proportional to the inverse temperatdre?) direction in a periodic boundary Euclidian Lattice
discretization of QCD. They measures the free enér@f one or more static quarks,

P(0) = Ne /T | P3(0)P3(r) = Neg Fal)/T (2.2)

If we consider a single solitary quark in the universe, indbefining phase, his string will travel as
far as needed to connect the quark to an antiquark, resiitanginfinite energy F. Thus the 1 quark
Polyakov loopP is a frequently used order parameter for deconfinement. iNérstring tension
o(T) extracted from thegq pair of Polyakov loops we can also estimate the 1 quark Polyidop
P(0).

At finite T, we use as thermodynamic potentials the free energgomputed in Lattice QCD
with the Polyakov loops [5, 6, 7, 8, 9], and illustrated in F& It is related to the static potential
V(r) = —fdr with F1(r) = — fdr — SdT adequate for isothermic transformations. In Fig. 7 we
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Figure 4: The perpendicular profile of the longitudinal electric field units of the lattice spacing =
0.0726185) fm. The flux tube is so thin, that in quark models it is usually eltEtl by a single parameter,
the string tensiomw.

extract the string tensions(T ) from the free energ¥; (T) computed by the Bielefeld group, and
we also include string tensions previously computed by tieéeBeld group [10].

We also find an ansatz for the string tension curve, amongrttex parameter curves of other
physical systems related to confinement, i. e. in ferrom@&gmeaterials, in the Ising model, in
superconductors either in the BCS model or in the Ginzbugdau model, or in string models,
to suggest ansatze for the string tension curve. We find lilgabtder parameter curve that best
fits our string tension curve is the spontaneous magnetizafia ferromagnet [11], solution of the

algebraic equation,
M T M >
=tanh| = . 2.3

Msat <T Msat (23)

In Fig. 8 we show the solution of Eq. 2.3 obtained with the fipeiht expansion, and compare it
with the string tensions computed from lattice QCD data.

3. The mass gap equation with finitel and finite current quark mass m.

Now, the critical point occurs when the phase transitionnges to a crossover, and the
crossover in QCD is produced by the finite current quark magssince it affects the order pa-
rameters or g, and the mass gap(0) or the quark condensatgq). Moreover utilizing as order
parameter the mass gap, i. €. the quark mass at vanishing mhaafenite quark mass transforms
the chiral symmetry breaking from a phase transition intoogsover. For the study of the QCD
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Figure 5: The renormalized Polyakov loop of a single quark, computeduy Lattice QCD group.

phase diagram it thus is relevant to determine how the cugesrk mass affects chiral symme-
try breaking, in particular we study in detail the effect béftfinite current quark mass on chiral
symmetry breaking, in the framework of truncated CoulombggaQCD with a linear confining
quark-antiquark potential.

The most fundamental information for the quark-antiquarieraction in QCD comes from
the Wilson loop in Lattice QCD, providing the confining quamktiquark potential for a static
quark-antiquark pair. This potential is consistent witk fannel potential, also utilized in the
quark model to describe the quark-antiquark sector of mepectrum, in particular to describe
the linear behaviour of mesonic Regge trajectories. Ndkiaeéthe short range Coulomb potential
could also be included in the interaction, but here we igrits@ce it only affects the quark mass
through ultraviolet renormalization [12], which is assuirte be already included in the current
guark mass. Here we specialize in computing different aspfechiral symmetry breaking with
linear confinement¥ = or. Since we are interested in working at finite temperaiukee utilize a
recent fit of lattice QCQ data with a temperature dependengsiensiono (T ).

To address the light quark sector it is not sufficient to knlegvdtatic quark-antiquark potential,
we also need to know what Dirac vertex to use in the quarlgaatk-interaction. This vertex is
necessary to study not only the meson spectrum but also tiendgal spontaneous breaking of
chiral symmetry. To determine what vertex to use, we review the quark-antiquark potential
can be approximately derived from QCD, in two different gasign Coulomb gauge [13],

0-A(x,t) =0 (3.1)

the interaction potential, as derived by Szczepaniak andnSen [14, 15], is a density-density
interaction, with Dirac structurg® ® y°. Another approximate path from QCD considers the mod-
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Figure 6: We show examples finite temperature static quark-antiqoaiéntials, in particular thgé < T
andT > T Lattice QCD data for the free energy, thanks to [5, 6, 7, 8, 9] Olaf Kaczmarek et al. The solid
line represents th€ = 0 static quark-antiquark potential. In this paper we disdbe use of the free energy
as a finite temperature quark-antiquark potential.
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Figure 7: Detall of the string tension fit in the case Bf= 0.94T.. We cut the low distance part in such a
way that a linear fit is stable for cuttof changes.

ified coordinate gauge of Balitsky [16] and in the interactmotential for the quark sector, retains
the first cumulant order, of two gluons [17, 18, 19]. This aga&isults in a simple density-density
effective y° ® yP confining interaction. As in QCD, this only has one scale, §gyin the inter-
action, since both the quark condensate and the hadrom@mettirn out to be insensitive to any
constant in the potential. Thus our framework is similar to an expansif the QCD interaction,
truncated to the leading density-density term, where thdimiog quark-antiquark potential is a
linear potential.

While this is not exactly equivalent to QCD, our frameworkimtains three interesting aspects
of non-pertubative QCD, a chiral invariant quark-antiduiateraction, the cancellation of infrared
divergences [20, 21, 22, 23, 24, 25], and a quark-antiguaéat potential [26, 27, 28, 14, 29, 30].
Importantly, since our model is well defined and solvableait be used as a simpler model than
QCD, and yet qualitatively correct, to address differeqeass of hadronic physics. In particular
here we study how chiral symmetry breaking occurs at finitgperaturelT and chemical potential
U, in the realistic case of small but finite current quark mas3éus we apply our framework to
the phase diagram of QCD.

Our interaction potential for the quark sector is,

vi= d3x[w*<x> (mof i+ 01) () +3 [ ay

W 0AW() TV (Y1) W APW(Y) (32)

where the density-density interaction includes just thedr confining potential together with an
infrared constant, which may be possibly divergent.

The mass gap equation and the energy of a quark are deterfmimedhe Schwinger-Dyson
equation at one loop order using the Hamiltonian of Eq. (3fa) a recent derivation with all
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Figure 8: (top) The critical curve for% as a function oleC, for T ~ T¢ it behaves like a square root.
(bottom) Comparing the magnetization critical curve wite tstring tensioro /gy, fitted from the long
distance part oFy, they are quite close.

details see [31]. The interaction in the four momentum ofgbential and quark propagator term
includes an integral in the energy

/. L -5 (3.3)

—w 2T pO—E(p)+i£: 2
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Figure 9: The linear potential must be regularized for the Fourien$farm, and we show our two different
regularizations both leading ¥(r) — 0 whenr — 0. Two successions of curves are plotted, leading exactly
to linear potentials in the limit of a vanishing infrared véator u —. The regularization of the negative
curves maintains the potential monotonous, but adds aargdrnegative constant to the potential. The
regularization of the positive curves maintain®) = 0 but the potential decreases for large

which factorizes trivially from the vectqe momentum integral. Using spherical coordinates, the
angular integrals can be performed analytically and finafily an integral in the modulus of the
momentum remains to be computed numerically. We arriveeatrthss gap equation in two equiv-
alent forms, of a non-linear integral functional equation,

0~ pS(p)-mC(p)— 5 [ 5 |

la(k, p, 1) S(KIC(p) — (k. p, u) S(P)C(K)]

(3.4)

10
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Figure 10: We plot the solution of the mass gap equatin®) at T = 0, for different values of the current
guark massry in the case where the string tensiorois= 1. We also show, with a solid line, the fit with a
two-parameter irrational function.

and of a minimum equation of the energy dengity

_ —9 /*dp|, s 2
& = 57t )o 271[2'0 C(p) +2p"mpyS(p) + 0 X (3.5)

/°° %IA(k, p, 1) S(K)S(p) + s (K, p,u)C(p)C(k)} :

0 21T

where the functionfs andla are angular integrals of the Fourier transform of the padierin what
concerns the one quark energy we get,

o [*dk
E(p) = pC(p)+moS(p)+E/0 Sialk P p) x
Sk)S(p) +le(k, p, 1) C(P)C(K) - (3.6)
In the chiral limit of massless current quarks, the breakihghiral symmetry is spontaneous.

But for a finite current quark mass, some dynamical symmetegking continues to add to the
explicit breaking caused by the quark mass. The mass gafi@yaathe ladder/rainbow truncation

11
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Figure 11: We plot the mass gam(0) as a function ofT for the lightu (lightest) andd (slightly heavier)
qguarks. We have a crossover, close to a phase transitiaog #ie current masses of the light quarks are
much smaller than the dynamically generated constituesutkquass.

of Coulomb Gauge QCD in equal time reads,

o co%IA(pkal)m(k)p_IB(p7kvl‘l)m(p)k

(o) = mot & , 3.7
(p) =My 0 Jo 2m k2 +m(k)2 &0
B pk pk
- pk pk 1, (p—k)?2+p?
ls(p.K, 1) = [(p—k)2+u2+ ke 29 (prket 2

The mass gap equation (3.7) for the running nmags) is a non-linear integral equation with a nasty
cancellation of Infrared divergences [32, 33, 34]. We deasiew method with a rational ansatz,
and with relaxation [31], to get a maximum precision in theARere the equation extremely large
cancellations occur. Since the current quark masses ofxistesmdard flavours, d, s, ¢, b, t span
over five orders of magnitude from 1.5 MeV to 171 GeV, we dgvelo accurate numerical method
to study the running quark mass gap and the quark vacuumyedengity from very small to very

12
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Figure 12: Log plot of the mass gamy(0) for the six different flavours of quarks as a functionfofFrom
bottom to top we show the quarksd, s, ¢, b andt. The heavier the quark, the weaker the crossover gets.

large current quark masses. The solutiofp) is shown in Fig. 10 for a vanishing momentum
p=0.

At finite T, one only has to change the string tension to the finite Tgstensiono (T) of Eq.
(2.3), for different quark masses [35], and also to replaténtegral inp® by a discrete sum in
Matsubara Frequencies. Both are equivalent to a redugtitimei string tensiong — ¢* and thus
all we have to do is to solve the mass gap equation in units*of The results are depicted in Fig.
10. Thus at vanishingypy we have a chiral symmetry phase transition, and at fmgeve have a
crossover, that gets weaker and weaker wingincreases. This is also sketched in Fig. 10.

4. Infrared regularization of the linear confining potential and the Matsubara sum

Notice that in the case of a linear potential, divergent im ithfrared, the Fourier transform
needs an infrared regulatpreventually vanishing. We illustrate two possible infraredulariza-
tions of the linear potential if Fig. 9.

A possible regularization of the linear potential is,

e Hr o

V(r)=-0o ~——40r, 4.1
(r) m I (4.1)

corresponding to a model of confinement where the quarkpaautk system has an infinite binding
energy%at the originr = 0, is monotonous and only vanishes at an arbitrarily largeadce. This

13
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Figure 13: Sketch of the saturation of confinement at the energy of tvewyuight groundstate mesons.

potential has a simple three-dimensional Fourier transfor

V(K) = /Omdri“msli(”(kr)vu)

=0, —8n 4.2)

and this is the most common form of the linear potential in rantam space utilized in the lit-
erature. Notice that this is infrared divergent due to-t#g 1 infinite binding energy in the limit
where the regulaton — 0.

If we want to avoid the infinite binding energy we should uséffeidnt regularization of the
linear potential, also vanishing whenr- co but not monotonous since it grows linearly at the origin
starting withV (0) =0,

V(r)=ore *' (4.3)
where the Fourier transform,
2
V(K =0 (szgz)z +o (kgin52)3 (4.4)
is such that the integrals kno longer diverge. For instance,
/ " Kedkv(K) = 0 (4.5)

14
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Figure 14: Sketch the order paramet@mpolyakov loop for the quark antiquark-system, as impliedtmsy
saturation of the energy of the quark-antiquark system.

since this is proportional 1 (0) = 0. The new term in the potenti?}fﬁf%i3 is equal to2rm)353(k) /i

in the limit u — 0, and this potential is infrared finite. Both the potential&€qgs. (4.1) and (4.3)
are illustrated in Fig. 9.

In the vanishing temperature limit= 0 the different regularizations lead to the same physical
results since any constant term in a density-density iotiera has no effect in the quark running
massm(p) or in the hadron spectrum [31]. The regularizations onlytcbate to the potential
and the one-quark energy, but it occurs that these coniitgiexactly cancel in the chiral order
parameters, and in the hadron spectrum.

However afl = 0 the two different regularizations may lead to differenygibal results.

IntheT = 0 mass gap equation or Schwinger Dyson equation, we have itile@Wski space
integral inp° of the quark propagator pole of Eq. (3.3) and this is equivaie an integral irp* in
Euclidian space after a Wick rotation in the Argand space,

» 2Mip*—E(p)+ie  2° (4.6)

/+°° id p* i 1
real axis the path correspondszte: p® and in the imaginary axis the path corresponds-oi p*.
Notice that the integral in Eqg. (4.6) is only identical to thee in Eq. (3.3) if the one quark
energyE(p) > 0. If E(p) < 0 the integral of Eq. (4.6) changes sign, and this is condistéh the
pole moving from the fourth quadrant to the third quadrarthefArgand plane. While the integral

15
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Figure 15: We sketch the light hadron spectrum. Notice that Wit} 0, the light masses and wavefunctions
do essentially scale wittr(T), and thus also essentially vanishlat T.

in Eqg. (3.3) is insensitive to this translation of the pohe Wick rotation leads to a pole correction.
For simplicity, we choose to work with positive one quarkmgies onlyE(p) > 0.

In finite temperaturd and densityp, the continuous euclidian space integration of eq. (4.6)
is extended to the sum in Matsubara frequencies,

+oo i

n:ZmikTi(ZnJrl)nkT— [E(p)] (4.7)

Itis clear that in the vanishing temperature and dersity < E limit one gets back the initial Eu-
clidean space integral of eq. (4.6), when the Matsubara gmoaches the continuum integration
with kT — 928,

Notice that afl # 0 the results depend on the constant in the potential. Siec#iatsubara
sum depends on the one quark endegp), and a constant shift of the potential added to the linear
term, sayv = o(T)r —Ug Up > 0, affects the energy by%a\Uo, thus weakening the finif€ effects
scaling Iike%. On the other hand if the shift is small enough to produce atesp a hegative
energyE(p) < 0, at vanishing density = 0, then the Matsubara sum could break down.

Thus we study here only one scenario for the constant patestiift —Ug, present anyway
in the different possible infrared regularizations of timear potential. Our scenario consists in a
maximum energy, withlg — o as in the standard regularization of the linear potenti&@af(4.1).

In that caseE(p) — « and the Matsubara sum is simply constant, producing awzg3 t= 0
result of%l. Our results are shown in Figs. 11 and 12.

We don't explore this second possible scenario here, lgavior a future study, consisting in
having the minimaly, closer to the regularization of the linear potential of E43), just sufficient
to cancel the one quark energy at vanishing momeri(@ = 0. In that case the Matsubara
sum makes a larger difference, interpolating between O m@shBng momentum and% at large
momentum. But we expect that, whatever the contributioh@Matsubara sum is, the temperature

16
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Figure 16: We sketch the behaviour of the meson spectra with temperalire light hadron massé&g
are dominated by the linear confining potential, and essntianish afT.. On the other hand, the heavy
hadron masseldlg are also significantly bound by the Coulomb potential, piling enough binding up to
a melting temperature above Tc.

dependence of the string tensialiT ) is the dominant finitd effect, and thus for a first exploration
our first scenario is sufficient.

5. Chiral symmetry and confinement crossovers with a finite curent quark mass

We now study whether the two main phase transitions in the @i3e diagram, confinement
and chiral symmetry breaking, have two different two caltipoints or a coincident one. Confine-
ment drives chiral symmetry breaking, and at small dengiih bransitions are a crossover, and
not a first or second order phase transition due to the finiekgmass.

However the quark mass affects differently these two phasesitions in the QCD. In what
concerns confinement, the linear confining quark-antiqueotential saturates when the string
breaks at the threshold for the creation of a quark-antigpair. Thus the free enerdy(0) of
a single static quark is not infinite, it is the energy of thingtsaturation. The saturation energy is
of the order of the mass of a meson i. e. ok2 For the Polyakov loop we get,

P(0) ~ Ng2M/T | (5.1)

Thus at infinitemy we have a confining phase transition, while at fimitgwe have a crossover,
that gets weaker and weaker whepdecreases. This is sketched in Figs. 13 and 14.

Since the finite current quark mass affects in opposite wagysttossover for confinement and
the one for chiral symmetry, we conjecture that at fiffitand u there are not only one but two
critical points (a point where a crossover separates fromase transition). Since for the light
andd quarks the current masg is small, we expect the crossover for chiral symmetry resion
critical to be closer to ther = 0 vertical axis, and the crossover for deconfinement to gpeatee
into the finiteu region of the critical curve in the QCD phase diagram dediateFig. 1.

We now compute the hadron spectrum, in particular the megsecis. In what concerns the
light meson masse¥qq are dominated by the linear confining potential. Tatthe string tension

17
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o(T) vanishes, the confining potential disappears, and thugyht hadrons decrease their mass
until they melt afl = T. Notice that chiral symmetry is not entirely restored beseary/+/0(T)
increases withT. Nevertheless, witil # 0, the masses and wavefunctions do essentially scale
with o(T), and thus also essentially vanishTat= Tc. This is sketched in Fig. 15. A comparable
vanishing of light meson masses also occurs in the sigma Irfiéle

In what concerns the heavy meson magddgs, the Coulomb potential is also relevant, and
thus the groundstates of the heavy mesons still bind abové&hices while the light mesons melt at
T =T, the heavy meson groundstates melt &ta T; [37, 38], as depicted in Fig. 16.

6. Outlook

We remark that the pure gauge string tensam(T ) is well fitted by the condensed matter
physics magnetization curyg and we utilize it.

We compute the dynamically generated quark nmag® , solving the mass gap equation both
for finite current quark masses, and for finiteT. The finite current quark masses turn both the
confinement and the chiral symmetry phase transitions wadifferent crossovers.

We qualitatively study the full spectra of light hadrons aité T, including the excited spectra,
and conclude that the light hadron masses essentiallytvanis = T;.. The light hadrons all melt
atT =T, since the masses and wavefunctions essentially scaleolth

We soon plan to complete the part of this work which is onlytaked herei, e. to compute the
excited hadron spectrum at finite continuing the work initiated with Tim Van Cauteren, Marco
Cardoso, Nuno Cardoso and Felipe Llanes-Estrada [3], acoipute and compare the crossover
curves for the chiral symmetry restoration and for the dénement at finiteT .
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