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1. Introduction

The Hamiltonian formulation of Yang-Mills (YM) theory in the Schrédinger pietualthough
not particularly efficient in the perturbative domain, offers considerabnefits when addressing
nonperturbative issues. Among its attractive features are the explicsesgation of the vacuum
state which invokes quantum mechanical intuitijn [1], the ability to treat gemaaletime prob-
lems (including non-equilibrium processes) as well as the transparsatigt@n of topological
effects [B]. In particular, however, it makes gauge theories acdedsita variational treatment
[fl. B, i.e. to one of the few approximation schemes currently availablerongly coupled quan-
tum field theories.

Variational calculations in Yang-Mills theories are often performed in a fgaaeye, most no-
tably in Coulomb gaugdJ4]. In the following we will report on our complementaplorations
[B] of a manifestly gauge-invariant formulation of the variational problg [This framework
renders fundamental infrared (IR) physics, including dimensionastnatation and the genera-
tion of a mass gap, particularly transparent. Moreover, it preservesiltiiepological structure
of the gauge group. The latter is particularly relevant since topologicglepties are likely ro-
bust enough to survive limitations of the restricted trial functional basiswkeeps the approach
analytically manageable. Another attractive feature of the gauge-invéoianulation is that the
infrared dynamics can be re-expressed in terms of gauge-invaritettoe fields which subsume
contributions from whole gauge-field orbit families. After performing arirtiproved variational
analysis [[b], we will make use of this feature to identify gauge-invariadtuamiversal IR degrees
of freedom of the gauge dynamid$ [7]. More details can be found in. & fg].

2. Gauge-invariant vacuum wave functionals

Starting from an approximate and hence typically gauge-dependemt’ ‘ftorctional Y W
of the static gauge fields (i.e. of half of the canonical variables), we impasge invariance by
averaging over the gauge group. The result is a trial vacuum waeéidaal (VWF) of the form

wo [A] = gzéQé’/Du @] go A = /DU o [A] 2.1)

wheredu is the Haar measure of the §\L) gauge groupQ the topological (homotopy) charge of
the group elemertt (%), and@ the vacuum angle. Since the vacuum wave functional is nod¢less [1],
one may writap |A| = 4 Lexp(—® A(P and expand the real function@linto a power series.
The constant term is absorbed intg and the term linear i\ is generally discarded (coherent
gluon vacuum states are known to be unstdble [8]).

The next term is quadratic ihand plays several crucial roles. First, it removes the ambiguity
in Wo [A] due to the invariance of the Haar measure in Hg.]| (2.1) under groopfaranations.
Furthermore, this term can incorporate asymptotic freedom and thus thiedéWF exact in the
ultraviolet. Finally, and from the practical perspective most importanthgctfanals resulting from
a quadratic term can be integrated okaanalytically. Hence one generally truncates the series for
@ after the quadratic term, which leads to the “squeezed” core functional

@s® [ﬂ} = J]‘éexp[—; /d3x/d3y'°{"1 (%) G2 (X—-y) A (9) (2.2)
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with the normalization factor;; * = [det(G/ 2)]’1/ * and a real “covarianceG 1.

2.1 Gluon dispersion: asymptotic freedom and IR generality

We now have to specify the properties of the funct@n' in the trial functional family [212).
Translational invariance was already anticipated in £q] (2.2). We will éantstrict ourselves to
a purely transverse covariance with the Fourier transfffm [6]

G " (k) = §;0%°G * (k) (2.3)

(cf. Ref. [] for a discussion of this choice and Ref$.][[0, 11] far impact of longitudinal
contributions). The normalizability of physical wave functionals then dem&d (k) > 0 and
further ensures vacuum stability and a positive energy spectrum. én tarimplement the correct
UV behavior, we factorize the core functionals |2.2) @ [A} = [&] @& [54 by

splitting thek integration domain in their exponentials into soft/hard momentum regions{w&\
U. The separation scaje will be determined below. Asymptotic freedom requife$o approach
the non-interacting, massless static vector propadagdk) = 1/k for k — . As long asu >
Avm (WhereAvyy is the Yang-Mills scale) perturbative hard-mode corrections remain smallhwhic
allows us to approximate

Gzl (k) =Gyt (k) =k (2.4)

The unknown IR covarianc&-! (k), on the other hand, will be determined variationally. In Ref.
[A] the minimal one-parameter trial functi@;}KK (k) = u was adopted. We have implemented a
far more comprehensive parametrizatign [7],'based on the undenadde@nalyticity assumptions
general and controlled gradient expansion

92 92\ ? 92\ 3
1+01”—X2+cz <le2> +C3 (lez> +...

Eq. (2.5) can be efficiently truncated to maintain an analytically manageabldasé for the
soft-mode physics. Besidgs the variational parameter space now contains the IR gluon mass
my > 0 and a few low-momentum constamiswhich characterize dispersive gluon properties in
the vacuum. The regularized delta functidh(X—y) := [ d3k/ (2m)36 (uz —E2> k-9 encodes
the slow variatior||dA- || / ||A<|| < u of the soft modes and ensures that the higher-order terms in
Eq. (2.5) are parametrically suppressed.

As a consequence @& (k) > 0, the low-momentum constants are subject to the bounds
c1 <1, ¢ > —1, etc. (formy > 0). Requiring continuity o5~ (k) at the matching poirk = g,
furthermore, fixesng as a function of the other variational parameters. When truncating:e- O,
for example, one has

Gl (X-y)=my 52 (X-9). (2.5)

m () = 5 o (2.6)

Note that the requirement of a non-negative IR gluon mass restricty tthemain toc; < 1, in
agreement with the above bound fr@a! (k) > 0. The VWF [2]1) together with the core func-
tional (2.2) and the covariancg (2.4), {2.5) (possibly with perturbativeections) appears to be
the “richest” gauge-invariant trial functional family whose matrix elementshmcalculated ana-
Iytically by currently available techniques.
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3. Variational analysis

One the basis of the trial functional familj (2.1) discussed above, theticadh analysis
amounts to minimizing the expectation value

<%(A7E)>:f Dﬁw;g%[(}ﬂ {2} H (3.1)

of the Yang-Mills Hamiltonian density

1
A = = (EPE? + B*B?) (3.2)

5 (
(in temporal gauge, witlE? =i5/ 3A2) with respect to the parameters appearingsin'. After
inserting the wave functiona] (2.1) into Eq[._(3.1) and interchanging therartiintegration over
fields and group elements, the gauge invariance oftintegral allows to factor out a gauge group
volume. Eq. [[3]1) can thus be rewritten as

/DU [ DAY [AV | (A%, 12 ) wio |A]
/DU [ DAgo [A°] uo A

(whereDU is the functional SUN;) measure as defined in Eq._{2.1)). After evaluating the func-
tional derivatives contained i, the Gaussian integration ovArcan be performed exactly, re-
sulting in

(A (AE)) = (3.3)

DU (1)) exp{—To U]}
)= U expl U] Gy

where we introduced the notation

<<<A..A.E..E>>>exp{—rb[U]}E/D/Rlpo [AU}/R...*...(;‘Z :SA%[ Al @5

for matrix elements betwedh-rotated and unrotated core VWFs. The above expression defines, in
particular, the effective bare actiéip [U] = —In [ DA 17 [AU Yo lWhICh describes dynamical
correlations generated by the gauge projection. This action gatherssdl gaoge-field contribu-
tions to the generating functional whose approximate vgguatt = +oo differ by a relative gauge
orientationU. Hence the gauge-invariant “variablg” represents the contributions from all such
gluon field orbits to the vacuum overlap. Explicitly, one finds [5]

rolU] = 233/ & [ a3 (%) 7 (- 9) L0 (9) (3.6)

ab
—1] ~1G-15%4 ... whereGY = G? (X )

with Li =U'4U =i LAA?)/ (21) and 72— | (G+ &)
UT(%) (A2/2)U (R) @U () (A°/2)UT(9).

After splitting U (X) = U~ (X) U~ (X) with U~ (X) = exp(—igg? (X) A2/2) into hard- and soft-
mode contributions and integrating over the hard mapfeperturbatively [[p], furthermore, one

arrives at DU [D@({{(#))) exp{—Tp[@,U-]}
— < _ b : -
=" oU. [Dpexp(-Tolp U]} o7
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With the additional definition
() exp{-T < [U]} 1=/D<0<<<ﬁ>>>eXp{—Fb[(P,U<]}, (3.8)
which contains the effective soft-mode action
< [U<] = ~In [ Dpexp{~Tylg.U-]} (3.9)

(i.e. the RG evolved bare actiop (B.6)), we can finally rewrite the matrix ele@eht solely in
terms of theJ_ field dynamics, i.e.

JDU_ ({(7)) exp{—T - [U.]}

W) = JDU-exp{—T-[U.]}

(3.10)

Since the “reduced” (i.e., fixed.) matrix element((.7#)) is a nonlocal functional of the soft
modesU_, the evaluation of Eq.[(3.].0) amounts to calculating (equal-time) soft-modelaton
functions [B].

3.1 Vacuum phases

In integrals over th&)_ fields (such as those in Ed. (3] 10)) the unitarity constrlaﬁtﬂ< =1
can be resolved by inserting a delta functional which is then written as atioaadl integral over
a hermitean auxilary field. In Eq. (3.1) the integration over the then unconstraldedecomes
Gaussian and can be done analytically. In the mean-field approximatiorxptression for (7))
is then evaluated at the saddle pcﬁnt (uE) of theX integral, i.e. at the minimal-action solution
of the gap equation

<UI,AB (X)U<Bc (X)> = Oac (3.11)

which reintroduces unitarity in the mean. After adopting the one-loop Yailig-dbuplingy (i) =

Ry (1) Ne/12 "E2 24/ (1111 /Ay ), the solutionst of Eq. (3.1]L) depend on two variational
parameters, the RG scgle> 0 andc; < 1. The critical lineyc (c1), i.e. the parameter subspace
where the (dis-)order parame®&(p (c1),c1) vanishes and the phase transition takes place, can be
found analytically as the combination of the two curves

pero(e) _, [48 (1)1 T(en) 1+ (L-cn)T(cy)]
Avu 111 oo ) /51 (c1) (1— 1)? — 4(1—c1) [L— i ()]

(3.12)

(T(c1) := arctank/c1/,/C1). We plot this closed phase boundary in Hif. 1. It limits the parameter
ranges to b < % < 8.86 and—0.48 < c¢; < 1 and thus prevents the minimal-energy solution
&* from attaining unacceptably large valuestofind|c;|. Nonzero solutions of the gap equation
exist only when the gauge coupling exceeds a critical value, i.eg?fqr) > g2 (c1), as expected

on physical grounds. The (dis-)order parameter goes to zero coash furthermore, i.e. the
disorder-order transition is of second order (which may be an artefabe mean-field approxi-
mation [}]).



Exploring Gauge-Invariant Vacuum Wave Functionals forgédills Theory Hilmar Forkel

Ok . 1
-0.4

-0.2 0.0 0.2 0.4 0.6 0.8 1.C

Figure 1: The vacuum phase diagram. Inside the plotted phase boupdéey) /Avy the theory is in its
strongly-coupled disordered phase. (The underlying agprations are reliable fou > 4Ayy andc; €
{-0.5,0.5}).

3.2 Vacuum ener gy density

Working with the Poincaré-invariant trial statds [2.1) and taking only oop-korrections
from the hard modes into acccount, it is sufficient to regularize Eq] (3.8 tmomentum cutoff
Auv [f]. Separating the complete vacuum energy densityE/V = (%) into hard and soft
contributions,

e(u,c1,{;&) = (Hm) =& (1) + &< (4,1, {;E), (3.13)
(¢ = mg/ ) the cutoff dependence resides solely in

NE-1 4 4
& ()= g5 (Noy —H%). (3.14)
As expected, this is the (regularized) zero-point energy density of amsversemasslessector
modes in the adjoint representation of Sk)(with energyw (k) = k. Simple normal-ordering thus
subtracts thé\yy dependent term. Fay-, = 0 one then finds the total energy dengtyu, c;) :=
€ (M,c1,4ct(c1); € (U,¢1)) in the disordered phase as

NS 4[4c}+10cf—50c:1+30 1—c;arctank/ci

elHe) =4 3032 (1—c1) & Jo
N Tp — 2C1T3 + €2y + 2ycy (1— 1) T2 (J3— 2C1ja+ C3Js) (3.15)
1-c¢ .

where the integrals,1&,c1), Jn(&,c1) are defined in Ref. [J5] and evaluated 5_3@1,01). This
energy density is plotted in Fif] 2.

Inthe ordered phase, i.e. fars> Aym whereg? (1) < 1, the energy density can be calculated
perturbatively (ing?). Since fluctuationg? aroundU. ~ 1 are small in this phase, one may
approximateJ. = exp(ig$p2A?) = 1+igp2A2+ O (g?) . After adding the hard-mode contribution
(B.1%) and discarding the zero-point contribution, this results in

N2-1 ,1-c1| &+150¢—50c;+30  arctank/cy

3.16
are Mg - e (3.16)

g(U,C1) =
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Figure 2: The energy densitg (u,c;) of the vacuum field solutioﬁ_(u,cl) in the disordered phase. (The
plot shows the parameter rangesx {4,9} Aym andc; € {—0.5,0.8}.) Note the minimum of the energy
surface at; ~ 0.15.

It is reasonable to expect that this perturbative result remains qualyateleable down to the
phase transition gt [f]. The singularity of the energy density @t — 1 encodes the vacuum
instability forc; > 1 and thus automatically ensures that the wave functional remains normalizable
during the variational analysis.

The most important lesson of the above analysis isgliat c;) increasesnonotonically with
p andc; (for —2 < ¢1 < 1) in the ordered phase while the energy dengity [3.15) in the strongly-
coupled disordered phase monotonicalbcreasesvith 1 andcy, up to the phase transition. This
indicates that the vacuum energy density becomes minimal at the phasebpourttie disordered
phase, i.e. af = 0, (where the number of massless particles becomes maximal [5]). The pre-
cise minimum, (u*,c;) ~ —21059A¢,,, is reached at} ~ 0.15 with p* = ¢ (¢}) = 8.61Aywm.
These values justify the perturbative treatment of the hard modes and4id tbentributions. The
c; corrections reduce the vacuum energy density by about 11% andipravather substantial
improvement of the wave functional.

3.3 Gluon condensate and quasigluon kinetic mass

At the physical parameter values, i.e. at the border of the disordeesE pthere the energy
is minimal, the gluon condensate becomes

(F?) = Ng1u4[7c§—zowc§+15c§+2owc§—50cl+3o <1c1 2y*>arctanh/c>1}
— _ V) atdiivi

30cf (1-¢1) cf 3 Ve
(3.17)
(v = g? (u*) N/ ~ 1.012). Numerically, this implies
<% F2> — 20.87\%y ~ 0.011 Get (3.18)

(for Aym ~ 0.15 GeV), i.e. an about 25% larger value than in the uncorrezted0 case. The re-
sult (3-IB) lies comfortably within the standard rar{ge /) F2) = 0.0080— 0.024 Ge\# obtained
from QCD sum rules[[12].
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Our finite and positive result far; has further interesting consequences since it reshapes the
composition and dispersion of the vacuum field population. Indeed, thetattrdR interactions
generated by; > 0 deplete the density of ultralong-wavelendgth- 0 modes and populate the
k ~ u modes more strongly. This is consistent with the expected average wam}eng/\;,\l,l of
the vacuum fields. Sind® ! (k) describes the dispersion relatian(k) of “quasigluon” modes in
the vacuum, furthermore, one may relatego the modulus of the dimensionless quasigluon group
velocity v (R) oy Ter (R) ok atk =y [,

V(H)
lci| = mES3 (3.19)
For 0> c; > 1 (as in our case), furthermore, the “effectkiaetic gluon mass'my, which relates
velocity and momentum de= mgV, is negative. Hence is opposite to the momentum, causing
the “quasigluons” in the vacuum to decelerate when an external forpplied. (Such dispersions
are encountered in several condensed-matter systems and are inostaaistcto the behavior of
free gluons.) Hence quasigluons (with their small scattering amplitudes) noay amegative
differential color resistance.

4. Infrared degrees of freedom

Our above representation of the vacuum dynamics in terms gfathge-invariantow-energy
fieldsU_. provides the opportunity to search for specific which may play a particularly impor-
tant or even dominant role in the generating functional (and hencersalisein all low-energy
amplitudes)[[IB3]. If such fields exist, they can be regarded as uahiefsared degrees of freedom
(IRdofs). In contrast to other proposed IRdof candidates (e.gsicklggauge-field solutions like
instantons([1l4], or monopole and vortex configurations), the IRdgisessed in terms df. are
gauge invariant and contain crucial quantum effects (e.g. those wiaibhize the instanton size,
see below). From a practical perspective, these IRdofs will be bagfurell since many technical
problems encountered when dealing with gauge-dependent fieldscaged¥rom the outset. Be-
low we will show that large classes of such IRdofs indeed exist andwevisv their stability and
topology emerges. We then construct important IRdof classes explicitlgiaodsss their properties
and physical interpretation.

4.1 Gauge-invariant saddle point expansion

We start from the vacuum overlap matrix element, i.e. the functional integral

7— /DU< exp(—T [U.]) 4.1)

over the soft modes, with the actibngiven by Eq. [(3]9). (Sources can be included when needed.)
A steepest descent approximation #ican be set up by expanditdy around the saddle point
fieldsU; (X), i.e. the local minima of the soft-mode actign {3.9) which solve

orfu-|
dU- (X)

=0. (4.2)

U.—g@
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(Different topological charges (see below) are summarily denoteq biyice the action is varied

in each topological sector separately.) To leading order, the saddlegxpansion foZZ is then a
weighted sum (or integral — the symbolic labélecomes continuous when the saddle points form
continuous families) over the contributions from all relevant solut@ﬁ%,

N 7 RC)
Z_Q;iﬁ[u' ]exp( r[uI D (4.3)

where nontrivial pre-exponential factdfsare typically generated by zero-mode contributions.

For the general analysis and explicit solution of Eq. ](4.2) we adopt themerization
U~ (X) = exp[o(X) A2 (X) A2/ (2i)] of the SUN,) elements and work directly with thgZ — 1 in-
dependent degrees of freedomlaf, i.e. the unit vector fieldh* and the spin-0 fieldp. For
simplicity, we will also specialize th; = 2 and use the first two terms in the expansion| (2.5) of
the inverse finite-mass gluon propaga®r* (k) = /k2 + u? as a template for the covariang¢ [7].
The soft-mode Lagrangian can can then be written as a sum of two- anddduative terms,

Z(Us) = Lod (@,0) + Zaa (9, 0). (4.4)

(For the explicit expressions see Reff] [7].) The saddle point equdfi@h, (vhen specialized to
variations with respect tgp andri®, becomes a system of four nonlinear partial differential equa-
tions. Its localized solutions can be shown to be stable under scale traasfuns, due to the virial
theoreml g (1) = [4q (1) [[A]. (Clearly the four-derivative terrfiq is crucial here — truncation of
the gradient expansiorn (2.5) to two powerséid_/u is therefore the minimal approximation
which supports stable saddle points.) The origin of this stability can be tradkd toass scalg
emerging from the out-integrated short-wavelength quantum fluctuations.

An already mentioned, crucial benefit of the gauge-projected wawidumals [2.]1) is that
they fully implement the nontrivial topology of the gauge group and fielde Ohfields thereby
inherit three integer topological quantum numbd}s [7]: a winding nuridek | (characterizing
the homotopy groupk (S*) = Z), a monopole-type degreg, [fi] based os () = Z and finally a
linking numbergy [A] in the Hopf bundles (82) = Z which classifies knot solutions. This topology
entails two lower action boundf| [7] of Bogomol'nyi type,

9/273/8
MUz 22Ul Tl @ ymd > 2 Tt @
which ensure that contributions to soft amplitudes from saddle points in lhigfye sectors can
generally be neglected. This allows for practicable truncations of theespdiht expansion.
(Saturation of the first bound requires the fields to solve the Bogomol'pg-gquationgiL; =
T ULy, incidentally, which can be considered as the analog of the self-(araljydaquation in
Yang-Mills theory.)

4.2 Important examples of gauge-invariant infrared degrees of freedom

In general, the saddle-point solutions have to be found numerically. Athengxceptions are
the translationally invariant vacuum solutiods = const (which are the absolute action minima
I'[Uc] = 0) and several nontrivial solution classes which can be found andlytida addition,
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important and sufficiently symmetric solutions classes can often be obtainesMviygssubstan-
tially simplified field equations[[7]. (The typically smaller action values of solutisite higher
symmetry generate a stronger impact on the matrix elements, furthermore.)

As an example for nontrivial analytical solutions, we considerfields with constant® for
which the saddle point equation becomes lin@&r{d%¢p — 2u?@) = 0. The general solution does
not carry any topological charge and was found in REf. [7]. Thessubf spherically symmetric
solutions with finite action, in particular, is

0=0) (1) = ¢y + — 2 (1— e V2Hr 4.6
@) =t 2 ) (4.6)

with the actionl” [¢("=9,A¢] = c&m/ (ﬁgz(u)). Since Eq. [(4]6) is not subject to topological
bounds, it continuously turns into one of the vacuum solutionsfes 0.
A particularly important saddle-point solution class consists of topologatabas of “hedge-
hog” type,
PR =2 o®=¢"™ () (4.7)

(R =x/r, r = [)). Well-defined hedgehog fields must satisfy the boundary condgith (0) =

2k, T (regularity at the origin further requireg’ (0) = 0) and finite-action fields additionally have
@M (00) = 2k, 71 wherek; » and the charg® = k; — k; are integers. The more general boundary
conditions

n—m
oM () =nm, @M () =mm, Q™| = = (4.8)

(n,minteger) additionally admit infinite-action solutions with half-integer winding nurse(for
eithermornodd). All hedgehog fields further carry the monopole-type chqwé:: Om[X] = +1.
Due to the periodicity inp, it is sufficient to consider boundary values in the rapg8) < |0, 2.
The dynamics ofp(r) is governed by the radial Lagrangian

2y =T 1 (r@")? + (3+ pr?) (¢f)* + 42 (1— cosq;)} . (4.9)
@ (H)p |2

The hedgehog saddle points, found numerically in Rgf. [7], turn outriapcise mainly contribu-
tions from and around the gauge orbits of the classical Yang-Mills solyti@ngmulti-) instantons
and (multi-) merons. The potential term in Efj. {4.9) is analogous to that cé-@lionensional pen-
dulum in a gravitational field, with stable (unstable) equilibrium positiong-atrr (¢ = 0), modulo
multiples of 2.

We first discuss the regular hedgehog solutions. Their three boundadjtionsg (0) = 2,
¢’ (0) =0 and@(«) = 2rr(1— Q) imply that for a givenQ all of them can be found by varying
the initial slopeB := ¢’ (0). (For the irregular solutions witlp(0) = 1 see Ref. [[7].) The reg-
ular solutions turn out to contain orfimite-actionsolution for each, denoted as the|Q| (anti)
instanton class”, and the remaining, continuous@)ninfinite-action families, the “2Q| (anti)
meron classes”. The 1-instanton class solution is depicted in[Fig. 3. Itsveet@tuge orienta-
tion U = U~1U, is even quantitatively close to that of the Yang-Milistanton[fL4] (orbit) (see
dashed curve in Fig[] 3). This confirms that tig@ instanton classes indeed primarily summa-
rize Yang-Mills instanton contributions. However, they also contain cruditdtation-breaking

10
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. \ Instanton-class solution (Q=1)
z Ve o, (r)=2r[1-r/(r*-4)"?]

I YM

r[GeV']
Figure 3: The l-instanton class solution. The dashed line corresptnithe Yang-Mills instanton.

quantum corrections which dynamically stabilize the instanton size at gbot@u—t, compat-
ible with instanton liquid model[J14] and latticg ]15] results, and thus overcomehinonic IR
instabilities of classical Yang-Mills instanton gases. Since instanton effetsmpportant roles
in Yang-Mills theory (e.g. in thé® vacuum [1p] and in spin-0 glueball physids][{2] [4, 17]), itis
crucial that they are (at least partly) included in the vacuum functidha).(In fact, approximate
non-hedgehog solutions corresponding dominantly to ensembles of imstantd anti-instantons
should also exist and play prominent roles (since they would be enhagcethrge “entropy”, as
in phenomenologically successful “instanton liquid” modgl$ [14]).

All remaining regular (i.e(0) = 2m) hedgehog solutions, with initial slop@sbetween the
discrete instanton-class valuBsg, form the 2Q| (anti-) meron classes. Those approach one of
the valuespy () = (2k+ 1) 1T at spacial infinity and therefore have infinite action, as the Yang-
Mills merons [IB]. Moreover, solutions witf () = (2k+ 1) 11, corresponding to an odd number
of merons, carry the half-integer topological cha€yef their Yang-Mills meron counterparts. In
addition, quantum effects ensure that our meron-class solutions aedfinite size and therefore
remain nonsingular. Since the@-meron classes appear in continuous families (parametrized
by their “size” 1), furthermore, their large entropy will help to overcome their infinite-action
suppression in functional integrals. As in Yang-Mills theory, merons cthed play a physical
role, e.g. in the confinement mechanigm [16].

We conclude our discussion of selected saddle-point solutions with dhe afost intriguing
classes, consisting of (solitonic) links and knots. Those emerge fromeaalzation of Faddeev-
Niemi theory [1B],

L8 (%) = gzp(lu) [(ai f2)2 ¢ le (ecainbo, ﬁ°>2+ 2‘112 (ebbonc) 2] : (4.10)
which is included in our soft-mode Lagrangian for constant (2k+ 1) 1. The corresponding
solution classed) (A) describe twists, linked loops and knots made of closed color fluxtubes.
Since Eqg. [(4.70) follows uniquely from the VWF (2.1) and the Yang-Millsaiyits, our approach
provides a new framework and physical interpretation for such solutiom$act, they remerge
as gauge-invariant IR degrees of freedom representing sets gé-gld orbits with a collective
Hopf charge. While the field of the Faddeev-Niemi model is interpreted as a gauge-dependent
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local color direction in the vacuum, in particular, ouis manifestly gauge-invariant. This may put
the tentative interpretation of such knot solutions as glueballs on a firmist bas

5. Summary and conclusions

We have studied gauge-invariant wave functionals for the Yang-Millswacwhich incorpo-
rate asymptotic freedom and arpriori general dispersion for the infrared gluons in Gaussian core
functionals. In this at present probably richest analytically manageabl@auge-invariant trial
functional basis, we have then variationally determined several vacuopenies. Dimensional
transmutation, dynamical mass generation and gluon condensation emespatesatly and gen-
erate mass scales consistent with other approaches. In addition, the@shpemuum description
in the infrared predicts a negatikinetic mass of the soft gauge-field modes and thus suggests a
negative differential color resistance of the Yang-Mills vacuum.

Another benefit of the gauge-invariant framework is that the dynamitdeaeformulated as
an effective theory which represents sets of gluon orbits as gauggant matrix fields subject
to higher-gradient interactions. In this effective theory we have setsgudle-point expansion to
determine the collective fields with maximal impact on functional integrals. Teaddle points
play the role of gauge-invariant infrared degrees of freedom. Thegtabilized by the dynamical
mass generation mechanism and inherit a rich topological structure (tlpedaal charges and
action bounds of Bogomol'nyi type) from the Yang-Mills gauge group. rédwer, they provide
the principal input for a systematic saddle-point expansion of soft ampstgsuch as glueball
correlators).

Several of the more symmetric and important saddle-point solution clasgedéan found
explicitly. Among them are topological solitons related to the classical Yang-Kfilldti-) pseu-
doparticle solutions which mediate tunneling processes in the vacuum. Teosete a gauge-
invariant representation of instanton and meron effects which includasm fluctuations. The
latter stabilize the pseudoparticle sizes dynamically, in particular, and theuebythe notorious
infrared deseases encountered in dilute instanton ensembles. Similar solittowther types of
topological charges exist as well but seem to have no obvious coarteip classical Yang-Mills
theory. One of the most intriguing solution classes, finally, consists of sigitioks and knots.
Those emerge from a generalization of Faddeev-Niemi theory which cutrt® be embedded in
our soft-mode dynamics. Hence in our framework the knot solutions fireheamd in particular
gauge-invariant physical interpretation, potentially related to glueballs.
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