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We present an explicit construction of the special part efttiree gluon vertex, which incor-
porates the Schwinger mechanism into the Schwinger-Dygoat®n of the gluon propagator,
enabling the generation of a dynamical gluon mass. Thigxedntains massless, longitudinally
coupled poles, acting effectively as composite Nambu-&olte bosons, generated by the strong
QCD dynamics. The basic ingredients required for this caotibn are the longitudinal nature
of this vertex and the Slavnov-Taylor identities that it tnsetisfy, in order for gauge-invariance
and BRST symmetry to remain intact in the presence of a gluassm
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1. Introduction

One of the most crucial theoretical ingredients appearirthe analysis leading to the gauge-
invariant generation of an effective gluon mass [1, 2, 3,s4dispecial type of vertex, denoted
by V, which contains massless, longitudinally coupled polehis Tertex complements the all-
order three-gluon vertex entering into the Schwinger-Dysguations (SDES) governing the gluon
self-energy, and is intimately connected with the famousw&tger mechanism [5]. The basic
underlying assumption is that the strong QCD dynamics wd#ld to the formation of massless
bound-state excitations, which, in turn, furnish the afieeationed poles that appear insMg6,
7,8,9,10].

Even though the presence of the veitéis indispensable for maintaining gauge invariance,
its explicit closed form is yet undetermined [11]. This is sopart because, at the level of the
“one-loop dressed” SDE analysis carried out so far, a grealt af information on the behavior of
the gluon mass may be extracted without explicit knowledgie vertexV, invoking only some
of its general properties, most notably the fact that it ldigp a completely longitudinal Lorentz
structure, and that it satisfies very powerful Slavnov-daytientities (STls) and Ward identities
(WIs) [12].

However, in order to be able to go beyond the “one-loop d¥ssgproximation in the SDE
studies, the closed form &f is absolutely necessary. This necessity becomes particailans-
parent within the formalism that has emerged from the swighbetween the pinch technique
(PT) [1, 13, 14, 4, 15, 16] and the background-field method\BR 7], known in the literature as
the PT-BFM scheme [3, 4] . In the present work we carry out #pdi@t construction of the vertex
V within this particular formalism.

2. General considerations.

In this section we introduce the appropriate notation ant/eotions, as well as the basic
ingredients that we will use in order to construct the pole phathe three-gluon vertex as well as
to motivate the necessity of determine its explicitly for@onsider then the full gluon propagator
in the renormalizabl®; gauges defined as

(@) = =1 Puvl@(P) + £ @.1)
where
vileld
Puv(d) = guv — e (2.2)

is the dimensionless transverse projector, &rbe gauge fixing parameter (a color facs® has
been factored out). The form factag?) is related to the all-order gluon self-enerfy,, (q) =
Py ()M (g?) through

A YeP) = o +iM(a) = ¢?I(a), (2:3)

whereJ(¢?) is theinverseof the gluon dressing function. As a direct consequence egtuge
invariance of the theory, which after the gauge-fixing iscgledd into the BRST symmetry, we
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Figure1l: The SDE corresponding to the PT-BFM gluon self-endiigy. The graphs inside each box form
a gauge invariant subgroup, furnishing an individuallypgeerse contribution. White (black) blobs denote
full propagators (vertices). External background legsrdeated by the small gray circles.

know that the gluon self-energy is transverse,
qunuv(q) =0, (2-4)

to all orders in perturbation theory, as well as non-pedtively, at the level of the SDE.

As is well known, in the PT-BFM scheme, the SDE of the gluorppgator, shown in Fig. 1,
assumes the form [3],

o
&R (@) = Ty e, @5

where the functiorG(g?) is the guv form factor in the Lorentz decomposition of the auxiliary
function

Auv(d) = —ig’Ca /k D(q— K)A%(K)Hyo(—,q— k. K)

= guG(eP) + ng L(c?), (2.6)

whereC, is the Casimir eigenvalue of the adjoint representatiorhefgauge group, and,, is
the standard ghost-gluon kernel, shown diagrammaticalBig. 3, together with the dressed-loop
expansion of\ .

One of the most powerful properties of the PT-BFM formulatis that the transversality of
the gluon self-energy is realized “blockwise” [15], followg the pattern shown in Fig.1.

If we focus our attention on the "one-loop dressed" gluortrifmutions to the PT-BFM gluon
self-energy, given by the subset of diagrafas) and(ay), the relevant Green’s function to con-
sider is the three-gluon vertex with one background leg ammdduantum legs denoted by BQQ
(see Fig. 2). This special vertex satisfies a WI when corgcaetith the momentung, of the
background gluon leg, and two STIs when contracted with tbenemtuny , or p, of the quantum
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Figure 2: The BQQ vertex with the conventions for the momenta, colarlaorentz indices.

gluon legs [18], namely

q“INFaW(q, r,p) = PPI(P?)Puv (P) — r23(r?)Puv(r),

T apy (61, ) = F (%) | PI(Q) P ()Mo (@1, P) — PPI(PP)PY (p)Fua(P.r. )

P'IM gy (a1, p) = F(PP) [rZJ(rZ)Pﬁ(r)ﬁva(r, P, ) — *J(o?)Py (@) Hyp(a, p,r)] . (@27
In these identities the ghost-gluon kerthQJV is obtained from the conventionBl,, by replacing

the external gluon by a background gluon, as shown in Fig.l& quantityF (%) represents the
ghost dressing function, related to the ghost propadatqgf) through

D(qf) = : (2.8)

Finally, the function]~(q2) corresponds to the inverse dressing function of the mixedkground-
guantum” gluon propagator (one background and one quantuomg entering, BQ), denoted by
E(qz). This latter propagator, together with the conventionabgl propagator (two quantum glu-
ons entering, QQ), denoted Ay q?), and the background gluon propagator (two background glu-
ons entering, BB), denoted l@(qz), are the three types of gluon propagators that appear natu-
rally in the BFM formalism. They are related by the so callbdckground-quantum identities”

X "o
nor) — v q 7] v q
H,(q,0,7) = g + «— Hy(g,p.r) = g + —
AN PERN
s /; ~ O/ 4 /]: ~ O/
“ 5%7; o W U
Aulq) = +
\ A \ AN A

Figure3: Diagrammatic representation of the auxiliary functieh$d andA. White blobs represent dressed
propagators, while gray blobs denote one-particle irrédei&ernels with respect to vertical cuts.
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(BQIs) [19, 20]
A(G?) = [1+G(0?)]?A(e),
A(?) = [1+ G(aP)]A(P),
A(G?) = [1+G(0?)]A(c?). (2.9)

Now, if we want to trigger the Schwinger mechanism, a poleavéfaw(q, r,p) containing
longitudinally coupled massless bound-state excitationst be added to the conventional (fully-
dressed) BQQ three-gluon vert@'xa“v(q, r,p), giving rise to the new full verte>k|~';,w(q, r,p)
defined as [11]

Py (@1, P) = Capy (A1, )+ Vapy (61, P)- (2.10)
The presence of this pole vertex enforces the gauge-im@iaf the theory in the presence of
masses. Specifically, when the gluon propagator beconexgieéfly massive, assuming the form [12,
21, 22]

B (07) = API() —mP(0), (2.12)
the full vertexI™’ ought to preserve the fundamental property (2.4); so, ittreatsfy the same
formal STI's (2.7), but with the replacemeft! — A-*. This requirement will be automatically
fulfilled if we demand that the pole vertaksatisfies the following STI's [11],

0*Vapy (0,1, p) = MP(r?)Pyuy (r) — m?(p?)Puy (p),
Vo (01, P) = F (%) [P (07)PY (p)lua (P.1,0) — TP(QP)PE (@)Huu (.1, P)|

(
P"Vapy (61, P) = F (%) | TR(G)PY (@Huu(a, p.1) — mE(2)RY (NFua(rp.0) - (2.12)

The massm appearing in Eq. (2.12) denotes the mass of the mixed bagkdrquantum gluon
propagatorﬁ(qz), and it is known to satisfy the same BQI as the full gluon pgaar, namely
Eq.(2.9), i.e [12]
P (o?) = [1+G(a?)JmP(cf). (2.13)

Finally, observe that the "two-loop dressed" gluon contiin to the PT-BFM gluon self-
energy, given by the subset of diagrafag) and(ag) in Fig. 1, contains an internal three-gluon
vertex with three quantum gluon legs (QQQ), as well as a fuon vertex with one background
and three quantum gluon legs (BQQQ). This BQQQ vertex sagisfie following WI when con-
tracted with respect to the background gluon leg [15],

QI e (G, G2, G, ) = i TS (G, O, G + )
+ ig f2Ir 5% (G, G2, O + o)
+ g fAIM D55 (02, O3, 01 + Cla). (2.14)
Therefore, the description of the "two-loop dressed" glbtwck in the presence of vertices with
pole structures requires the knowledge of the pole QQQ thheEn vertex, denoted by. In this

case, the background leg becomes quantum, and the Abelian-like W1 in (2.12) is regdidoy an
STI, namely

9 Vauv(a,1, p) = F(0?) [mP(r?)PJ (N)Hay (1,0, p) — mP(p*)PS (P)Hap(p.a.r)],  (2.15)
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while the STIs with respect to the other two legs are thosemf(E.12), but with the “tilded”
guantities replaced by conventional ones.

3. Explicit construction.

Turns out the explicit closed form of the two pole verticesginestion,V andV, may be
determined from the STIs they satisfy, and the requiremeoabimplete longitudinality, i.e, condi-
tion [11]

PP (q)PHP ()P ? (p)Vppo (0,1, P) = O. (3.1)

Specifically, opening up transverse projectors in (3.1% oan write the entire vertex in terms of
its own divergences,

~ Jdo Bo Mu oo Pv oo Qaf ~ QaPv
Vauv(Q> r, p) = q_qBVﬁuv + _zrpvapv + F pUVaua q2r2 qB p q p2 qﬁ p Bua
p QaluP Y
— r‘;pZ P pVapo + q‘;rgp; PrPpVspo- (3.2)
Note that the last term will not contribute because if we gpipé STI's,
1P p?Vppo (a1, p) = 0. (3.3)

So, using (2.12) to evaluate the various terms, and afteagtforward rearrangement, we obtain
the following expression for the pole part of the BQQ vertex,

Vayao(@1,9) = 5 [MP(%) —1P(0)] P (1)Ppu (P
+ D(r?) [ (p?)PY (p)Fpa (P.1.0) — AP (CP)PE ()RS (P)Hpo (a1, P)| T
+ D(p) [ T()PE (Mo ( p.1) —M(r2)PE (DFpa (1. G) | P (34)

Applying the same procedure but using now the STIs (2.15) el as the longitudinally
coupled condition (3.1), we derive the closed expressiothi®pole part of the QQQ vertex

Vau (a1, p) = D(6?) [MA(r?)Hpo (1,0, p) — mP(p*)Hap(p,a,1)] P (1)PY (p)da
+ D(r?) [mP(p*)PY (P)Hpa (P, 1, 0) — M (qP)PE (a)PY (P)Hpo (0,1, )] Ty
+D(p2)[mz(qz) % (@) Hpp(a, p,r) — mP(r?)PE (N Hpa (1, p,a)] py- (3.5)

Now we need to discuss some points related to the self-¢densisof our vertex construction.
Observe that in order to obtain expressions (3.4) and (31B)must apply sequentially the WI
and the STls. In doing so, the Bose symmetry of both vertisesoi longer explicit, and the
result obtained is not manifestly symmetric under the quargluon legs exchange. Furthermore,
seemingly different expressions are obtained, dependingtoch of the two momenta acts first
onV. However, if one imposes the simple requirement of algebtammutativity between the
WI and the STIs satisfied by the three-gluon vertex, the Bgaargetry becomes manifest. For
example, using (3.4) we can see that the elementary regeitem

qaruval-lv(q7 r7 p) = ruqavaﬂv(qv r7 p) ) (36)
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gives rise to the following identity

F(r*)P(p)a" Hyua (p,1,q) = —r Py (p). (3.7)
A similar identity is obtained by imposing the requiremeh{6) at the level oV, namely
F(r?)PY'(P)a"Hua (p,r.0) = —F (6%)PY' (P)r “Hyua (.4, 1)- (38)

Quite remarkably, the identities (3.7) and (3.8) are a dlicensequence of WI and the STI
that the kernel$l andH satisfy, when they are contracted with the momentum of tickdraund
or quantum gluon leg, namely [18],

A"Hya(p.r,0) = —puF ~H(p%) —ruF74(r?),
an[J(X(pa ra q) = —F(qz) [leF_l(pz)C(q> r’ p) +raF_l(r2)HIMX(p’ q’r)] ’ (39)

whereC(q,r, p) is the auxiliary function that characterizes the four-ghasnel (see Fig. 4). In-
deed, use of (3.9) into (3.7) and (3.8), respectively, lgada trivial identity. Conversely, one

.
\\\‘ g O~ N )
\
Clg,pr)=1 + Q » —

7 \\ /
v 7
70

Figure 4: Diagrammatic representation of the auxiliary funct@m, p,r).

may actually derive (3.9) from (3.7) and (3.8); for examlarting with (3.7), and using also the
identities [18]
pll ﬁua(p, r’ q) = r(XFil(rz) - F(X(ra qa p)a
07T a(r,a,p) = PFH(p?) —rPF(r?), (3.10)
one can easily reproduce (3.9).
Evidently, these constraints allow us to cast the pole daheoBQQ vertex into a manifestly

Bose symmetric form with respect to the quantum legs,
vauv(q7 r7 p) = ?:]_g [mz(rz) - mz(pz)] Pﬁ(r)PPV(p) +|~auv(q7 r7 p) - ravu(qv p7 r)7 (311)
with

lapv (a1, p) = D(rA)m?(p?)PY (P)Hoa (P.1. Q)1

— D(r2)2(c?)PE (0) 97 + P (P)] Hpo a1, P). (3.12)
Finally, for the pole part of the QQQ vertex, the Bose symin&ixpression reads
Vauv(a,1,P) = lauv (a1, ) — lpav (.0, P) = lvpa (P,1, ), (3.13)
with
lapw (0T, P) = q7"D(qz) [mP(r?)PE (r)Hoy (1,0, p) — P (P*)PY (P)Hpu(p. 0. 1))]
+ D) [M(r2)Hpo (1. 0. P) — M(P2)Hap(P.6,D)] AP (P). (3:14)
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4. Conclusions.

In this work we have reported the explicit closed form of tladeparts of two particular ver-
tices, which are intimately connected to the phenomenorusfngmass generation, as described
within the PT-BFM formalism. Specifically, we have deterednthe pole parts of the BQQ and
QQQ vertices, denoted By andV, respectively. The only ingredient necessary for this tras
tion is the longitudinal nature 8f andV and the STIs and WIs that they must satisfy. These two
vertices are expected to form an integral part of the ongBID§ studies that aim to determine the
precise guantitative details of the gluon mass generatiechamism.
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