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We present an explicit construction of the special part of the three gluon vertex, which incor-

porates the Schwinger mechanism into the Schwinger-Dyson equation of the gluon propagator,

enabling the generation of a dynamical gluon mass. This vertex contains massless, longitudinally

coupled poles, acting effectively as composite Nambu-Goldstone bosons, generated by the strong

QCD dynamics. The basic ingredients required for this construction are the longitudinal nature

of this vertex and the Slavnov-Taylor identities that it must satisfy, in order for gauge-invariance

and BRST symmetry to remain intact in the presence of a gluon mass.

International Workshop on QCD Green’s Functions, Confinement and Phenomenology
5-9 September 2011
Trento, Italy

∗Speaker.

c© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/



P
o
S
(
Q
C
D
-
T
N
T
-
I
I
)
0
2
5

The pole part of the three-gluon vertex. David Ibanez

1. Introduction

One of the most crucial theoretical ingredients appearing in the analysis leading to the gauge-
invariant generation of an effective gluon mass [1, 2, 3, 4] is a special type of vertex, denoted
by V, which contains massless, longitudinally coupled poles. This vertex complements the all-
order three-gluon vertex entering into the Schwinger-Dyson equations (SDEs) governing the gluon
self-energy, and is intimately connected with the famous Schwinger mechanism [5]. The basic
underlying assumption is that the strong QCD dynamics will lead to the formation of massless
bound-state excitations, which, in turn, furnish the aforementioned poles that appear insideV [6,
7, 8, 9, 10].

Even though the presence of the vertexV is indispensable for maintaining gauge invariance,
its explicit closed form is yet undetermined [11]. This is so, in part because, at the level of the
“one-loop dressed” SDE analysis carried out so far, a great deal of information on the behavior of
the gluon mass may be extracted without explicit knowledge of the vertexV, invoking only some
of its general properties, most notably the fact that it displays a completely longitudinal Lorentz
structure, and that it satisfies very powerful Slavnov-Taylor identities (STIs) and Ward identities
(WIs) [12].

However, in order to be able to go beyond the “one-loop dressed” approximation in the SDE
studies, the closed form ofV is absolutely necessary. This necessity becomes particularly trans-
parent within the formalism that has emerged from the synthesis between the pinch technique
(PT) [1, 13, 14, 4, 15, 16] and the background-field method (BFM) [17], known in the literature as
the PT-BFM scheme [3, 4] . In the present work we carry out the explicit construction of the vertex
V within this particular formalism.

2. General considerations.

In this section we introduce the appropriate notation and conventions, as well as the basic
ingredients that we will use in order to construct the pole part of the three-gluon vertex as well as
to motivate the necessity of determine its explicitly form.Consider then the full gluon propagator
in the renormalizableRξ gauges defined as

∆µν(q) = −i

[
Pµν(q)∆(q2)+ ξ

qµqν

q4

]
, (2.1)

where

Pµν(q) = gµν −
qµqν

q2 , (2.2)

is the dimensionless transverse projector, andξ the gauge fixing parameter (a color factorδ ab has
been factored out). The form factor∆(q2) is related to the all-order gluon self-energyΠµν(q) =

Pµν(q)Π(q2) through

∆−1(q2) = q2 + iΠ(q2) = q2J(q2), (2.3)

whereJ(q2) is the inverseof the gluon dressing function. As a direct consequence of the gauge
invariance of the theory, which after the gauge-fixing is encoded into the BRST symmetry, we
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Figure 1: The SDE corresponding to the PT-BFM gluon self-energyΠµν . The graphs inside each box form
a gauge invariant subgroup, furnishing an individually transverse contribution. White (black) blobs denote
full propagators (vertices). External background legs areindicated by the small gray circles.

know that the gluon self-energy is transverse,

qµΠµν(q) = 0, (2.4)

to all orders in perturbation theory, as well as non-perturbatively, at the level of the SDE.

As is well known, in the PT-BFM scheme, the SDE of the gluon propagator, shown in Fig. 1,
assumes the form [3] ,

∆−1(q2)Pµν(q) =
q2Pµν(q)+ iΠµν(q)

[1+G(q2)]2
, (2.5)

where the functionG(q2) is the gµν form factor in the Lorentz decomposition of the auxiliary
function

Λµν(q) = −ig2CA

∫

k
D(q−k)∆σ

µ(k)Hνσ(−q,q−k,k)

= gµνG(q2)+
qµqν

q2 L(q2), (2.6)

whereCA is the Casimir eigenvalue of the adjoint representation of the gauge group, andHµν is
the standard ghost-gluon kernel, shown diagrammatically in Fig. 3, together with the dressed-loop
expansion ofΛµν .

One of the most powerful properties of the PT-BFM formulation is that the transversality of
the gluon self-energy is realized “blockwise” [15], following the pattern shown in Fig.1.

If we focus our attention on the "one-loop dressed" gluon contributions to the PT-BFM gluon
self-energy, given by the subset of diagrams(a1) and(a2), the relevant Green’s function to con-
sider is the three-gluon vertex with one background leg and two quantum legs denoted by BQQ
(see Fig. 2). This special vertex satisfies a WI when contracted with the momentumqα of the
background gluon leg, and two STIs when contracted with the momentumrµ or pν of the quantum
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Figure 2: The BQQ vertex with the conventions for the momenta, color and Lorentz indices.

gluon legs [18], namely

qα ĨΓαµν(q, r, p) = p2J(p2)Pµν(p)− r2J(r2)Pµν(r),

rµ ĨΓαµν(q, r, p) = F(r2)
[
q2J̃(q2)Pµ

α (q)Hµν(q, r, p)− p2J(p2)Pµ
ν (p)H̃µα(p, r,q)

]
,

pν ĨΓαµν(q, r, p) = F(p2)
[
r2J(r2)Pν

µ (r)H̃να(r, p,q)−q2J̃(q2)Pν
α (q)Hν µ(q, p, r)

]
. (2.7)

In these identities the ghost-gluon kernelH̃µν is obtained from the conventionalHµν by replacing
the external gluon by a background gluon, as shown in Fig. 3. The quantityF(q2) represents the
ghost dressing function, related to the ghost propagatorD(q2) through

D(q2) =
F(q2)

q2 . (2.8)

Finally, the functionJ̃(q2) corresponds to the inverse dressing function of the mixed “background-
quantum” gluon propagator (one background and one quantum gluons entering, BQ), denoted by
∆̃(q2). This latter propagator, together with the conventional gluon propagator (two quantum glu-
ons entering, QQ), denoted by∆(q2), and the background gluon propagator (two background glu-
ons entering, BB), denoted bŷ∆(q2), are the three types of gluon propagators that appear natu-
rally in the BFM formalism. They are related by the so called “background-quantum identities”

H̃νµ(q, p, r) = gµν +

r

p

q

µ

ν

Λµν(q) =

µ ν

+

µ ν

Hνµ(q, p, r) = gµν +

r

p

q

µ

ν

Figure 3: Diagrammatic representation of the auxiliary functionsH, H̃ andΛ. White blobs represent dressed
propagators, while gray blobs denote one-particle irreducible kernels with respect to vertical cuts.
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(BQIs) [19, 20]

∆(q2) = [1+G(q2)]2∆̂(q2),

∆(q2) = [1+G(q2)]∆̃(q2),

∆̃(q2) = [1+G(q2)]∆̂(q2). (2.9)

Now, if we want to trigger the Schwinger mechanism, a pole vertex Ṽαµν(q, r, p) containing
longitudinally coupled massless bound-state excitationsmust be added to the conventional (fully-
dressed) BQQ three-gluon vertex̃IΓαµν(q, r, p), giving rise to the new full vertex̃IΓ

′

αµν(q, r, p)

defined as [11]
ĨΓ

′

αµν(q, r, p) = ĨΓαµν(q, r, p)+Ṽαµν(q, r, p). (2.10)

The presence of this pole vertex enforces the gauge-invariance of the theory in the presence of
masses. Specifically, when the gluon propagator becomes effectively massive, assuming the form [12,
21, 22]

∆−1
m (q2) = q2J(q2)−m2(q2), (2.11)

the full vertexĨΓ
′

ought to preserve the fundamental property (2.4); so, it must satisfy the same
formal STI’s (2.7), but with the replacement∆−1

→ ∆−1
m . This requirement will be automatically

fulfilled if we demand that the pole vertex̃V satisfies the following STI’s [11],

qαṼαµν(q, r, p) = m2(r2)Pµν(r)−m2(p2)Pµν(p),

rµṼαµν(q, r, p) = F(r2)
[
m2(p2)Pµ

ν (p)H̃µα(p, r,q)− m̃2(q2)Pµ
α (q)Hµν(q, r, p)

]
,

pνṼαµν(q, r, p) = F(p2)
[
m̃2(q2)Pν

α (q)Hν µ(q, p, r)−m2(r2)Pν
µ (r)H̃να(r, p,q)

]
. (2.12)

The massm̃ appearing in Eq. (2.12) denotes the mass of the mixed background-quantum gluon
propagator̃∆(q2), and it is known to satisfy the same BQI as the full gluon propagator, namely
Eq.(2.9), i.e [12]

m̃2(q2) = [1+G(q2)]m2(q2). (2.13)

Finally, observe that the "two-loop dressed" gluon contribution to the PT-BFM gluon self-
energy, given by the subset of diagrams(a5) and(a6) in Fig. 1, contains an internal three-gluon
vertex with three quantum gluon legs (QQQ), as well as a four-gluon vertex with one background
and three quantum gluon legs (BQQQ). This BQQQ vertex satisfies the following WI when con-
tracted with respect to the background gluon leg [15],

qµ
1 ĨΓ

abcd
µναβ(q1,q2,q3,q4) = ig f abxIΓcdx

αβν(q3,q4,q1 +q2)

+ ig f acxIΓdbx
βνα(q4,q2,q1 +q3)

+ ig f adxIΓbcx
ναβ (q2,q3,q1 +q4). (2.14)

Therefore, the description of the "two-loop dressed" gluonblock in the presence of vertices with
pole structures requires the knowledge of the pole QQQ three-gluon vertex, denoted byV. In this
case, the background legqα becomes quantum, and the Abelian-like WI in (2.12) is replaced by an
STI, namely

qαVαµν(q, r, p) = F(q2)
[
m2(r2)Pα

µ (r)Hαν(r,q, p)−m2(p2)Pα
ν (p)Hαµ(p,q, r)

]
, (2.15)
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while the STIs with respect to the other two legs are those of Eq. (2.12), but with the “tilded”
quantities replaced by conventional ones.

3. Explicit construction.

Turns out the explicit closed form of the two pole vertices inquestion,Ṽ andV, may be
determined from the STIs they satisfy, and the requirement of complete longitudinality, i.e, condi-
tion [11]

Pαβ (q)Pµρ(r)Pνσ (p)Ṽβρσ (q, r, p) = 0. (3.1)

Specifically, opening up transverse projectors in (3.1), one can write the entire vertex in terms of
its own divergences,

Ṽαµν(q, r, p) =
qα

q2 qβṼβ µν +
rµ

r2 rρṼαρν +
pν

p2 pσṼαµσ −

qα rµ

q2r2 qβ rρṼβρν −
qα pν

q2p2 qβ pσṼβ µσ

−

rµ pν

r2p2 rρ pσṼαρσ +
qα rµ pν

q2r2p2 qβ rρ pσṼβρσ . (3.2)

Note that the last term will not contribute because if we apply the STI’s,

qβ rρ pσṼβρσ (q, r, p) = 0. (3.3)

So, using (2.12) to evaluate the various terms, and after a straightforward rearrangement, we obtain
the following expression for the pole part of the BQQ vertex,

Ṽαµν(q, r, p) =
qα

q2

[
m2(r2)−m2(p2)

]
Pρ

µ (r)Pρν(p)

+ D(r2)
[
m2(p2)Pρ

ν (p)H̃ρα(p, r,q)− m̃2(q2)Pρ
α (q)Pσ

ν (p)Hρσ (q, r, p)
]

rµ

+ D(p2)
[
m̃2(q2)Pρ

α (q)Hρµ(q, p, r)−m2(r2)Pρ
µ (r)H̃ρα(r, p,q)

]
pν . (3.4)

Applying the same procedure but using now the STIs (2.15) as well as the longitudinally
coupled condition (3.1), we derive the closed expression for the pole part of the QQQ vertex

Vαµν(q, r, p) = D(q2)
[
m2(r2)Hρσ (r,q, p)−m2(p2)Hσρ(p,q, r)

]
Pρ

µ (r)Pσ
ν (p)qα

+ D(r2)
[
m2(p2)Pρ

ν (p)Hρα(p, r,q)−m2(q2)Pρ
α (q)Pσ

ν (p)Hρσ (q, r, p)
]
rµ

+ D(p2)
[
m2(q2)Pρ

α (q)Hρµ(q, p, r)−m2(r2)Pρ
µ (r)Hρα(r, p,q)

]
pν . (3.5)

Now we need to discuss some points related to the self-consistency of our vertex construction.
Observe that in order to obtain expressions (3.4) and (3.5) one must apply sequentially the WI
and the STIs. In doing so, the Bose symmetry of both vertices is no longer explicit, and the
result obtained is not manifestly symmetric under the quantum gluon legs exchange. Furthermore,
seemingly different expressions are obtained, depending on which of the two momenta acts first
on Ṽ. However, if one imposes the simple requirement of algebraic commutativity between the
WI and the STIs satisfied by the three-gluon vertex, the Bose symmetry becomes manifest. For
example, using (3.4) we can see that the elementary requirement

qα rµṼαµν(q, r, p) = rµqαṼαµν(q, r, p) , (3.6)
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gives rise to the following identity

F(r2)Pµ
ν (p)qα H̃µα(p, r,q) = −rµPµ

ν (p). (3.7)

A similar identity is obtained by imposing the requirement of (3.6) at the level ofV, namely

F(r2)Pµ
ν (p)qα Hµα(p, r,q) = −F(q2)Pµ

ν (p)rα Hµα(p,q, r). (3.8)

Quite remarkably, the identities (3.7) and (3.8) are a direct consequence of WI and the STI
that the kernelsH andH̃ satisfy, when they are contracted with the momentum of the background
or quantum gluon leg, namely [18],

qα H̃µα(p, r,q) = −pµF−1(p2)− rµF−1(r2),

qαHµα(p, r,q) = −F(q2)
[
pµF−1(p2)C(q, r, p)+ rα F−1(r2)Hµα(p,q, r)

]
, (3.9)

whereC(q, r, p) is the auxiliary function that characterizes the four-ghost kernel (see Fig. 4). In-
deed, use of (3.9) into (3.7) and (3.8), respectively, leadsto a trivial identity. Conversely, one

q

p

r

C(q, p, r) = 1 +

.

Figure 4: Diagrammatic representation of the auxiliary functionC(q, p, r).

may actually derive (3.9) from (3.7) and (3.8); for example,starting with (3.7), and using also the
identities [18]

pµH̃µα(p, r,q) = rαF−1(r2)− Γ̃α(r,q, p),

qα Γ̃α(r,q, p) = p2F−1(p2)− r2F−1(r2), (3.10)

one can easily reproduce (3.9).
Evidently, these constraints allow us to cast the pole part of the BQQ vertex into a manifestly

Bose symmetric form with respect to the quantum legs,

Ṽαµν(q, r, p) =
qα

q2

[
m2(r2)−m2(p2)

]
Pρ

µ (r)Pρν(p)+ Ĩαµν(q, r, p)− Ĩαν µ(q, p, r), (3.11)

with

Ĩαµν(q, r, p) = D(r2)m2(p2)Pρ
ν (p)H̃ρα(p, r,q)rµ

−

rµ

2
D(r2)m̃2(q2)Pρ

α (q) [gσ
ν +Pσ

ν (p)]Hρσ (q, r, p). (3.12)

Finally, for the pole part of the QQQ vertex, the Bose symmetric expression reads

Vαµν(q, r, p) = Iαµν(q, r, p)− Iµαν(r,q, p)− Iν µα(p, r,q), (3.13)

with

Iαµν(q, r, p) =
qα

2
D(q2)

[
m2(r2)Pρ

µ (r)Hρν(r,q, p)−m2(p2)Pρ
ν (p)Hρµ(p,q, r)

]

+
qα

2
D(q2)

[
m2(r2)Hρσ (r,q, p)−m2(p2)Hσρ(p,q, r)

]
Pρ

µ (r)Pσ
ν (p). (3.14)
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4. Conclusions.

In this work we have reported the explicit closed form of the pole parts of two particular ver-
tices, which are intimately connected to the phenomenon of gluon mass generation, as described
within the PT-BFM formalism. Specifically, we have determined the pole parts of the BQQ and
QQQ vertices, denoted bỹV andV, respectively. The only ingredient necessary for this construc-
tion is the longitudinal nature of̃V andV and the STIs and WIs that they must satisfy. These two
vertices are expected to form an integral part of the ongoingSDE studies that aim to determine the
precise quantitative details of the gluon mass generation mechanism.
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