PROCEEDINGS

OF SCIENCE

Massive gluon propagator
at zero and finite temperature

Attilio Cucchieri 2P, David Dudal °, Tereza Mendes *@ and Nele Vandersickel P
3Instituto de Fisica de S&o Carlos, Universidade de Sdo Raulo
Caixa Postal 369, 13560-970 Sao Carlos, SP, Brazil
bGhent University, Department of Physics and Astronomy,
Krijgslaan 281-S9, 9000 Gent, Belgium
E-mail: attili o@fsc. usp. br ,davi d. dudal @igent . be,
mendes@ f sc. usp. br ,nel e. vander si ckel @gent . be

We report on our study of the infrared gluon propagator fo(ZUhttice gauge theory using large
lattice volumes. The observed massive behavior is disdussm the point of view of analytic
predictions for the zero-temperature case. Such a behiavatill present as the temperature is
switched on, but manifests itself differently in the elecand magnetic channels.

International Workshop on QCD Green’s Functions, Confinetraed Phenomenology,
September 05-09, 2011
Trento Italy

*Speaker.

(© Copyright owned by the author(s) under the terms of the Cre&@tdmmons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/



Massive gluon at zero and finite T Tereza Mendes

1. Introduction

The massive infrared behavior of the gluon propagdt@?) in Landau gauge (see e.qg. [1]) has
been distinctively observed in lattice simulations using very large volumes yefais ago [2, 3, 4],
for SU(2) and SU(3) pure gauge theory (see [5] for a review). Dhisavior has been recently
analyzed in terms of an effective running mass in [6] (see also [7]) drabsibeen associated to the
dimension-two condensates in the so-called refined Gribov-Zwanzig&L Y Ramework (see e.g.
[8]) for the SU(3) case in [9]. Here we present the results of our fitsedsU(2) gluon propagator,
which can be associated to the RGZ formula. More precisely, we haverped systematic fits
to our data in the whole range of available momenta (in the infrared regionj tl#nso-called
Gribov-Stingl form [10, 11] for modeling the massive behavior of the glpoopagator. This
form is a generalization of the Gribov propagator [12, 13] — which is thasea pair of purely
imaginary complex-conjugate poles — to include pairs of complex-conjugége pith a nonzero
real part, as well as a possible real pole. We have tested severabtdtoms of this type for
D(p?), and found that a four-parameter expression (in which one of themgdeas is a global
normalization) gives the best quantitative description of the data in the 4d kathe 3d case we
need five parameters, one of which again serves as a global normalizatierbehavior in the
two cases is associated respectively to the simplified and to the generaldRGdds forD(p?).

In two dimensions, on the contrary, the use of rational forms is not suffitiedescribe the data.
This case will not be considered here. A more detailed discussion of eesg¢emperature fits
has been presented recently in [14].

At finite temperature, a similar massive behavior is observed for both thetddimeal (electric)
and the transverse (magnetic) gluon propagator in the infrared limit [18,71838, 19, 20, 21, 22].
In this case, we have used a modified Gribov-Stingl form to describeld(#)$lata and to define
electric and magnetic screening masses. A recent update on our reauds foaund in [23]. This
study is still preliminary.

In the following, we review the features of the RGZ framework in Sectionéh firesent our
fit results in Section 3. The finite-temperature case is considered in Sectfoliodved by our
conclusions and the bibliography.

2. The Refined Gribov-Zwanziger Framework

The refined Gribov-Zwanziger framework (RGZ) differs from thersué originally proposed
by Gribov [12] and Zwanziger [13] through the introduction of dimengdien-condensates [8, 24,
25, 26, 27]. In the most general case, four different condenaatasonsidered, i.e.

(ABAR) — —nP (@07 — M? (9707 —p (@2 = p', (2.1)

where we have listed the dynamical mass associated to each condengatthalthe condensate
—n is directly related to the gluon condens&t@A?). In the presence of the four condensates
above, the original infrared suppressed gluon propagator in [12s b3odified as

p*+2M2p? + M* — (p2 + p2)

D(p?) =
() P8+ p# (M2 +2M2) + p2 [2mPM2 + M4+ A4 — (pZ + p2) | + M2 [M* — (pZ + p3)| + A% (M2 — py)

. (2.2)
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where the condensate®, M2, p are described above aidd is related to the Gribov parametgr
throughA* = 2g?N.y*. Also, we have set

p=pitip2
p' = pi—ipz. (2.3)
It is interesting to notice that this propagator gets simplified i pt = p; (i.e. p» = 0), which

corresponds to the equalityd ) = (¢ ¢ ) from (2.1). Indeed, in this case one can factorize the
quantity p?> + M? — p; in the numerator and in the denominator of the above formula, obtaining
p2+ M2+ py

D(P?) = 3 7
p*+ P2 (M2+ M2+ p1) + M2 (M2+pg1) + A
Note that both Egs. (2.2) and (2.4) can be decomposed as sums of giagagf the type
a/(p?+ w?). In particular, we can write Eq. (2.2) as

a B y
D(p%) = :
L v S 2T A
To this end, we only need to solve the cubic equation
x4+ (M +2M?) + x [2mPM2 + M* + A% — (07 + p3) | + P [M* — (pf + p3)]
+A4(M?—p) =0, (2.6)

(2.4)

(2.5)

obtained by setting® = x in the denominator of Eq. (2.2), and to find its three raofs w2 and
w3. Atthe same time, the gluon propagator in Eg. (2.4) can be written as

o oay a
Bl = Prw? | pPra?

2.7)

where we expectto hawe = a7} if w? = (w?)*,i.e.if w? andw? are complex conjugates. Here,
w? are the roots of the quadratic equation

X2+ X (M2 4+ P+ p1) +m? (M2 4 p1) +A% = 0, (2.8)

obtained by setting? = x in the denominator of Eq. (2.4). Clearly, one finds complex-conjugate
poles if M2 — 2+ py| < 2A2.

Let us remark that rational forms such as (2.2) and (2.4) for the glumpagator were con-
sidered by Stingl [10, 11], as a way of accounting for nonperturbaffects in an extended per-
turbative approach to Euclidean QCD. More precisely, in his treatmentexpresses the proper
vertices of the theory as an iterative sequence of functions yielding-astistent solution to the
Dyson-Schwinger equations. In particular, for the gluon propagtitisrsequence is written [see
Eqg. (2.10) in Ref. [11]] in terms of ratios of polynomials in the variapfe of degree in the nu-
merator and + 1 in the denominator, with=0,1,2,.... This functional form is then related, via
operator the product expansion, to the possible existence of vacwnaemrgates of dimensiom2
with n> 1. Atthe same time, the associated complex-conjugate poles are interprstextased
elementary excitations of the gluon field [10, 13, 11]. By comparison, in tBg fRamework, one
proposes specific forms for the dimension-two condensates — relateddmtttiary fields of the
GZ action — and then obtains (at tree level) the rational functions in Eq9.48®2(2.4), which
correspond respectively to cases with 3 and 2 in Stingl’s iterative sequence.
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3. Zero-temperature results

We analyze data for the SU(2) Landau-gauge gluon propagatongeddn 2007 and already
discussed in [3, 28, 29, 5], but not systematically fitted until recently. r@arparameters and
lattice setup are described in [14]. We note that the lattice spaciaget by using the 4d SU(3)
value for the string tension, as described in [30] and [31] respectigely = 3 and 4. All our runs
are in the scaling region. Possible systematic effects due to Gribov copiedlas unquenching
effects arenot considered here. Finite-volume effects, on the other hand, are wedl wodtrol
and our largest lattice volumes can be already considered as infinite. e tiat, in order to
reduce discretization errors due to the breaking of rotational symmettyaweeconsidered several
configurations for the momentum componepgsand used the improved momentum definition in
[32], which does not affect the value pf in the IR limit, but modifies its value significantly for
large momenta. We have checked that the use of improved momenta helps tcadiedtier fit to
the data in both the 4d and the 3d cases.

Values of physical parameters (i.e. the condensates and poles intiddube previous sec-
tion) are extracted from the data at the largest lattices, with lattice volunfein281 and 328
in 3d, and lattice spacing respectively of 0.210 fm and 0.268 fm. This sworeds to physical
volumes of abouf27 fm)* and (85 fm)3, or equivalently smallest momenta of about 46 MeV and
14 MeV, respectively in 4d and 3d.

Our results are summarized below. We refer to [14] for a more completesialye remark
that the shown data fdd(p?) arenot normalized and that a renormalization condition at a given
scale would correspond to a rescaling of the overall faCtor the fitting forms considered below.
The condensates and the poles, on the other hand, are not affeciechiog renormalization. Also
note that, since our largest momentum is of the order of 4 GeV, ultravioletifiogec corrections
are not important to describe the lattice data and they are not included in thg fittintions
proposed here. This also avoids the problem of having to regularizetfesponding Landau pole
by hand.

In the 4d case, our best fit is obtained for a four-parameter fitting fumatiche simplest

Gribov-Stingl form ,
S

f1(p%) = Cp4+22;2+t2’ (3.1)
which corresponds to the simplified RGZ propagator in Eq. (2.4), modulo lgi®lgrescaling
factorC. The results of the fit for all lattice volumes, using improved momenta, aretespor
Table 1. The good quality of the fit is seen by comparing it to the data, asnsfiomwour largest
lattice) in Fig. 1. Let us stress that we are fitting the whole momentum rangeldeailad that, for
the largest lattice volume, we have 257 data points.

We mention that a test of the more general form of the propagator [giveq.i(2.2)] consid-
ering a six-parameter fitting function leads to an unstable fit, in which most qfaremeters are
determined with very large errors, suggesting that the function has too freduyndant) parame-
ters. We then reduced the number of parameters by one and introdudeththe

(P*+5) (P*+1) p*+ (s+1)p?+s

WP = C ) (P - CFr P p s’ G
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Y, C uGeV) t(GeV?) s(GeV?) x2/d.o.f.
48  0.791(0.007) 0.755(0.027) 0.707 (0.013) 2.419 (0.119)  2.09
56 0.801(0.006) 0.734(0.023) 0.696(0.012) 2.305(0.100)  1.92
64° 0.791(0.007) 0.760(0.024) 0.710(0.012) 2.425(0.108)  2.35
80" 0.785(0.005) 0.734(0.019) 0.708(0.009) 2.404 (0.084)  2.04
96° 0.795(0.004) 0.717 (0.016) 0.694 (0.008) 2.291 (0.068)  1.66
128 0.784(0.005) 0.768 (0.017) 0.720(0.009) 2.508 (0.078)  1.63

Table 1: Fits of the gluon-propagator data in the 4d case, for diffefattice volumes, using the fitting
function f1(p?) and improved momenta. We report, besides the value of thefinpeters, thg?/d.o.f.
obtained in each case. The whole range of momenta was coegifite the fit. Errors shown in parentheses
correspond to one standard deviation.

D(p?)

Figure 1: Plot of the 4d gluon propagat@¥(p?) (in GeV~?) as a function of the (improved) momentym
(in GeV) for the lattice volum&/ = 128". We also show the fitting functiofy (p?). Note the logarithmic
scale on thg axis.

which is written as a simple generalizationfaf p?) in Eq. (3.1). In this case the fits look reason-
able, but the errors are larger and fyd.o.f. is not better for the five-parameter fit compared to
the four-parameter fit, indicating that the latter is more stable. Also, the fitkgesiggest a very
small (and imaginary) value fgp, implying thatp is real and thus supporting the simpler form in
Eq. (2.4), fitted above using the functidn(p?).
In order to extract the value of the condensates described in Sectimv@, ate thus consider

only the fit results forf1(p?) and the volum&/ = 128" (using improved momenta), reported in the
last row of Table 1 and plotted in Fig. 1. By settirig{ p?) equal to the RGZ propagator in Eq.
(2.4) (modulo the global factdZ), we find for the condensates the values reported in Table 2. We
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parameter propagation of error Monte Carlo analysis bootstrap analysis
M? + p1 (GeV?) 2.51(8) 2.51(8) 2.3(3)
e (GeV?) —1.92(9) —1.92(9) —1.7(2)
A% (GeV) 5.3(9) 5.3(4) 4.5(9)
a 0.392(3) 0.392(2) 0.38(1)
b 1.32(7) 1.32(5) 1.20(7)
v(Ge\?) 0.29(2) 0.29(2) 0.29(3)
w(GeV?) 0.66(2) 0.66(1) 0.64(2)

Table 2: Estimates of the parameters of the simplified RGZ gluon pyafma in Eq. (2.4) and of the function
f2(p?), obtained from fits to the equivalent forfa(p?). Errors are calculated using propagation of error,
a Monte Carlo analysis and a bootstrap analysis. In all casesonsidered the volumé = 128" and
improved momenta.

see thafM? — ? + py| < 2A2, justifying our expectation that the propagator may be decomposed
in terms of a pair of complex-conjugate poles. We can thus write [see E{j (2.7
a, a_ 2ap? + 2(av+bw)

2 _ _
f2(P) = P2+ o? TR T PP (33)

with . = a+ib andw? = v=+iw. The results for the parameteagh, v andw are also shown in
Table 2. We note that the errors (given in parentheses) correspamgttstandard deviation and
were evaluated in three different ways: by propagation of error, Blpate Carlo error analysis
and by a bootstrap analysis. We refer to [14] for details of these puoesd Clearly, all results
obtained agree within errors. We see that the poles are complex conjugeiss imaginary part
is more than twice their real part. We recall that a Gribov propagator wavd & null real part.

Let us mention that the values obtained hereM@r+ p;, m? andA# are in good quantitative
agreement with the corresponding values — respectively indicatedMthm? and 22Ny* —
reported in Ref. [9] for the SU(3) cadeAlso, as remarked above, the condensatenay be used
to obtain a value for the gluon condens&téA?), through the relation (see e.g. [9])

9 NE-1

2pA2\

(3.4)

In our case, the valua? = —1.92(9) from Table 2 (using propagation of error) yiel(g#A?) =
1.99(9) Ge\~.

In the 3d case the simplified fitting forr (p?) in Eq. (3.1) is not able to describe well the
lattice data. Indeed, even using improved momentaxttid.o.f. values obtained are quite large.
Moreover, as can be seen in Fig. 2, the fit clearly fails in the IR re§jidhe situation improves
by considering the (five-parameter) fitting functié{p?) in Eq. (3.2) above, as can be seen from
the results reported in Table 3, obtained using improved momenta. Let us méraiome have

1For comparison with our values in Table 2, the SU(3) condensates @prar¢ respectively 2.15(13) GéV
—1.81(14) GeV? and 4.16(38) GeY/.

2In order to highlight the results at small momenta, here and in Fig. 3 veept¢he plot with a logarithmic scale
on both axes.
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D(p?)

0.01 0.1 1
p

Figure 2: Plot of the 3d gluon propagat@(p?) (in GeV 1) as a function of the (improved) momentym
(in GeV) for the lattice volum&/ = 320°. We also show the fitting functiofy (p?). Note the logarithmic
scale on both axes.

Y, C(GeV) u(GeV) t(GeV?) s(GeV?) k(GeV?)
146 0.407 (0.001) 0.654 (0.008) 0.623(0.004) 0.022(0.002) 0.041 (0.003)
2000 0.407 (0.001) 0.655(0.007) 0.623(0.004) 0.024 (0.002) 0.043 (0.003)
24 0.408 (0.001) 0.662 (0.007) 0.620(0.004) 0.025(0.002) 0.047 (0.003)
32 0408 (0.001) 0.656(0.008) 0.619 (0.005) 0.023(0.002) 0.046 (0.004)

Table 3: Fits of the gluon-propagator data in the 3d case, for diffefattice volumes, using the fitting
function f4(p?) and improved momenta. The?/d.o.f. is about 1 for the lattice volume 320The whole
range of momenta was considered for the fit. Errors shown ienpaeses correspond to one standard
deviation.

also tried a six-parameter fit to a more general function, obtained by stingtitp? + 1) in the
numerator off4(p?) in Eq. (3.2) by(p?+1). In this case we obtain a good fit (witk?/d.o.f.
around 1), with =~ 1 and values of the other parameters that are consistent with the oneddn Tab
3, indicating that the latter fit is preferable.

In order to evaluate the condensates of the RGZ model, we thus consigi#n@results from
the fit usingfs(p?), given for the lattice siz& = 320 in the last row of Table 3 and plotted in Fig.
3. By settingfs(p?) [see Eq. 3.2)] equal to the RGZ propagator (2.2) modulo the global f@gtor
we find the values for the condensates in Table 4. Note that, using this fittimg fee are able
to evaluateM?, p; and|p| (and thereforep,) separately. In this case, we can see fhag 0 and
p is indeed a complex quantity. This is consistent with the fact that the (foarypeter) fit to the
simplified form f,(p?) fails, as seen above. Finally, we decompose the propagator as in Bq. (2.5
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D(p?)

0.01 0.1 1
p

Figure 3: Plot of the 3d gluon propagat@(p?) (in GeV 1) as a function of the (improved) momentym
(in GeV) for the lattice volum&/ = 320°. We also show the fitting functiofy(p?). Note the logarithmic
scale on both axes.

with B =a-+ib, y=a—ib, w = v+iw e wi = v—iw, i.e. we consider the function

a_ . 2a’ + 2(av+bw)
PP+w? prH2vp +vi4w?’

The corresponding results are also repottedTable 4. Also in this case we have performed
the error analysis in three different ways: propagation of error, tel@arlo error analysis and
bootstrap analysis (see [14] for details). Note that the imaginarypafthe complex-conjugate
poles is more than twice the value of their real pads in the 4d case. Note also that the mass
and the residue associated with the real pole are very small. Moreowéds negative, which may
be associated with violation of reflection positivity, indicating that this massataromrespond to
a physical degree of freedom.

fo(p?) = (3.5)

4. Finite temperature

We have used a modified Gribov-Stingl expression to fit our infraredfdefinite-temperature
Landau-gauge SU(2) gluon propagators @#nl3dimensions) reported in [18, 20, 23]. For both the
longitudinal (electric) propagatd®, (p?) and for the transverse (magnetic) propag&tefp?), we
consider the five-parameter fitting fofm

14+dp*

Prap+ o @4

Dur(p?) =C

SClearly, we haveo? = k from f4(p?).
“Note that, as in the previous section, the global congasfiixed (for given values o, b, d, ) by the renormal-
ization condition, so that there are only four free parameters in (4.1).
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parameter propagation of error Monte Carlo analysis bootstrap analysis
M? (GeV?) 0.512 (1) 0.512 (1) 0.513 (1)
e (GeV?) —0.55(1) —0.55(1) —0.52(2)
A4 (GeVh) 0.94 (1) 0.94 (1) 0.91 (3)
p1(GeV?) 0.479 (2) 0.479 (2) 0.477 (2)
p2 (GeV?) 0.09 (1) 0.094 (9) 0.100 (6)
a(GeV) —0.024(5) —0.024(5) —0.029(4)
w? (GeV?) 0.046 (4) 0.046 (4) 0.046 (4)
a(GeV) 0.216 (3) 0.216 (2) 0.220 (4)
b(GeV) 0.27 (5) 0.271 (3) 0.275 (3)
v(GeV?) 0.215 (5) 0.215 (5) 0.23 (1)
w(GeV?) 0.580 (6) 0.580 (6) 0.57 (1)

Table 4: Estimates of the parameters of the general RGZ propagakar.i2.1) and of the functiofig( p?),
obtained from fits to the equivalent forfg(p?). Errors are calculated using propagation of error, a Monte
Carlo analysis and a bootstrap analysis. In all cases wedanes the volume&/ = 320° and improved
momenta.

This form allows for two (complex-conjugate) poles, with mass®s = a + ib, wherem =
Mg + im;. The massnthus depends only aa b and not on the normalizatig®. The parameten
should be 1 if the fitting form also describes the large-momenta region (fuorimfvared data we
getn # 1). Recall that at high temperatures one usually defines the electriomsuerass as the
scale determining the exponential decrease of the real-space prapaigarge distances, which
is equivalent toD| (0)~1/2 in the case of a real pole. We therefore expect to obseyve: 0 (i.e.

b — 0) for the longitudinal gluon propagator at high temperature. Note that, {fribygagator has
the above form (with nonzetu), then the screening mass definedy(0) %2 = /(a2 +b?)/C
mixes the complex and imaginary massasandm, and depends on the (a priori arbitrary) nor-
malizationC.

We generally find good fits to the modified Gribov-Stingl form above (inclgdire full range
of momenta), with nonzero real and imaginary parts of the pole masses is@dl. déor the trans-
verse propagatddt (p?), the massesr andm, are of comparable size (around 0.6 and 0.4 GeV
respectively). The same holds g (p?), but in this case the relative size of the imaginary mass
seems to decrease with increasing temperature. A detailed discussion sfdb@ted masses,
my is postponed to a forthcoming study [33], as we are presently considexiiants of the above
fitting form inspired by the zero-temperature forms considered in the pregections.

We show our fits, together with the data, for several values of the tempefat(given in
terms of the critical temperatui®) in Fig. 4. We see thaD, (p?) increases as the temperature is
switched on, whileDt (p?) decreases slightly, showing a clear turnover point at around 350 MeV.
It is interesting to notice that the infrared behavioryf( p?) remains unchanged (within errors)
from 0.5T; to T, as shown in the bottom right plot in the figure. (The curves shown adatiace
parameter$ = 2.299 2.515 and lattice volumes 86 8, 192 x 8 respectively for the temperatures
0.5T. and 1.01T..) In fact, after reducing the severe systematic effects that are obsarvend
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Figure 4: Longitudinal and transverse gluon propagatord at 0 (top left), T = 0.25T; (top right) and

T = 0.5T¢ (bottom left). Curves foll = 0.5T. and 1.01T; are shown together for comparison on the bottom
right. Values for the lattice volumi3 x N, the lattice parameteB, the lattice spacing and spatial lattice
sizeL (both in fm, in parentheses) are given in the plot labelshwhie exception of the bottom right plot,
which is described in the text.

Te, we find a relatively smooth behavior Bt (p?) with T, which calls into question the sensitivity
of the electric propagator to the deconfinement transition.

5. Conclusions

By fitting rational functions ofp? to the whole range of our (infrared) data for the SU(2)
Landau-gauge gluon propagaidtp?) in four and three space-time dimensions, we are able to
obtain estimates for the physical values of the masses in the RGZ framewark]las to gain a
better understanding of the pole structure in the proposed expres§lmnsgata points range from
about 4 GeV down to 20-40 MeV, which are the smallest simulated momenta to ldagach

10
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case, we look for the best fit to the data, with the smallest number of indepeparameters, and
relate them to the condensates in the proposed analytic forms only at thBw@rdifferently, the
predicted dependence of the fit parameters on the condensatasrigposed in the fitting form,
but is obtained as a result of the fit.

We find that the 4d results are well described by the simplified version of @& gluon
propagator in Eq. (2.4), equivalent to the simplest Gribov-Stingl forms Tbrresponds to a pair
of complex-conjugate poles, as opposed to the Gribov propagator, irnHecpoles would be
purely imaginary. The values for the condensat¥st p;, n? andA* are in agreement with the
ones obtained for the SU(3) case in Ref. [9]. The quantitative agrddratmeen the infrared limit
of SU(2) and SU(3) theories was observed numerically before in [4, 34

In 3d, our fits support the more general form of the RGZ propagatoqif{Z2). In this case,
the condensatp is a complex quantity and there are significant differences in the value® of th
other condensates and &f compared to the 4d case. Also, in 3d one has a real pole mass in
addition to the pair of complex-conjugate poles. It is interesting to note that thsemdrom the
complex poles assume similar values in 3d and 4d, with an imaginary part thatesmaortwice
their real part. (We recall that a Gribov propagator would have a nalllpart.) Note also that the
mass and the coefficient associated with the real pole in 3d are very small.

Our analysis strongly suggests a pole structure with complex-conjugatesn@ggh com-
parable real and imaginary parts) for the infrared gluon propagatoai&u gauge, for zero-
temperature (in 4d and 3d) and for nonzero temperatures below antataucritical temperature
Tc. As stressed at the end of Section 2, one can interpret this result@desan unstable parti-
cle. In particular (see [14]), in the zero-temperature 4d case we obtawathesmy ~ 550 MeV
andlg ~ 1180 MeV respectively for the gluon mass and for its width. The very leafige for the
width 'y may be associated to a lifetintg smaller than 10?4 s, supporting the existence of very
short-lived excitations of the gluon field.
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