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1. Introduction

In this talk | will give an overview over recent results oliad within the Hamiltonian ap-
proach to QCD in Coulomb gauge. | will focus on the extensibthis approach to finite tem-
peratures and to the inclusion of quarks. My main interesé héll be the finite-temperature
deconfinement phase transition and the spontaneous bgeafiihiral symmetry.

Going to Weyl gaugé\y = 0 canonical quantization of Yang—Mills theory yields théddaing

Hamiltonian 1
H— 5/<ﬁ2+§2). (1.1)

Herell = 3/idA is the canonical momentum operator aBids the non-Abelian magnetic field.

The Yang—Mills Hamiltonian (1.1) is invariant under sphtane-independent) gauge transforma-
tions. A quantity of central interest in quantum field the@ythe vacuum wave functional, by

means of which all correlation functions can be evaluatdds Guantity is obtained by solving the
Schrédinger equation

Hy=Ey (1.2)

for the lowest energy eigenstate. There have been varitersgts to solve the Yang—Mills Schro-
dinger equation (1.2) directly for gauge invariant wavectionals, in particular irD = 2+ 1,
see Ref. [1] and references therein. One can give argumeaitshie Yang—Mills vacuum wave
functional (inD = 3+ 1) can be approximated in the low-energy regime by [2]

WIA] = exp H /F.ﬂ . (1.3)

So far one has not succeeded in determining the Yang—Millswa wave functional in a gauge
invariant way. A much more convenient way is to fix the gaugéfanthe purpose of Hamiltonian

Yang—-Mills theory Coulomb gauge is, in particular, conesnti The prize one pays is that the
Hamiltonian is more complicated. In Coulomb gauge the Yadifis Hamiltonian is given by [3]

l — = .
H— 5/ <J*1niJni+BZ) +He, (1.4)

whereJ = Det(—D4) is the Faddeev—Popov determinant with= 9 + gA, A2P = facbAC heing the
covariant derivative in the adjoint representation. Femtfore,

2
He — % / I AR = % / I 1p(~Da) L(—0?)(~Da) 1p (L.5)

is the Coulomb Hamiltonian, which arises from solving G&uksv (which is a constraint to the
wave functional to guarantee gauge invariance) for theitodimal momentum operatd!. In
Eq. (1.5),p = pg + pm is the total color charge, which contains beside the chafdeeoYang—

Mills field pg = —An also the charge of the matter fields. By resolving Gauss’s law gauge
invariance has been fully taken into account and in Couloaumg each functional of the transverse
gluon field AL, dA+ =0 is, in principle, a physical wave functional. Note that e tcanonical
guantization of Yang—Mills theory the gauge field figurestas ¢oordinate, and the transition to
Coulomb gauge implies a transition to curvilinear coortésa Accordingly, the kinetic piece of
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the Yang—Mills Hamiltonian [the first term in Eq. (1.4)] reskles the Laplacian in curvilinear
coordinates. In the scalar product of the Yang—Mills wawecfionals the transition to Coulomb
gauge can be accomplished by using the standard Fadde@xRmhod, which introduces the
Faddeev—Popov determinant also in the integration measure

(@l...1¢) = [ DAJ(A) ¢'(A)... y(A). (16)

2. Zero-temperature Yang—Mills theory

One can solve the Yang—Mills Schrédinger equation in pbétion theory by expanding the
Hamiltonian and the wave functional in powers of the couploonstantg, applying standard
Rayleigh—Schrédinger perturbation theory [4]. From thesl@mb term (1.5), which is ordeg?,
one can extract the running coupling constant and obtaagmsadme result as in ordinary covariant
perturbation theory within the functional integral forratibn. We are interested here, however, in
a non-perturbative solution of the Yang—Mills Schrddingguation and for this purpose we exploit
the variational approach using Gaussian type wave fura§ofT he first variational calculations in
Coulomb gauge were performed in Ref. [5] and later on in R&f. Qur approach [7] differs from
previous variational calculations in Coulomb gauge in theadz of the vacuum wave functional,
in the treatment of the Faddeev—Popov determinant (tréatiydn our approach and at least par-
tially neglected in previous approaches) and in the renlizateon, for more details see Sect. IID
of Ref. [1].

The variational approach developed in Tubingen uses thkanisatz for the vacuum wave
functional [7]

YA = ;Aexp[—:—;/AwA] , (2.1)
Det(—D2)
which contains besides the exponential the inverse sqoateof the Fadeev—Popov determined.
This has the advantage that in expectation values the Fadeepov determinant in the integration
measure, see Eq. (1.6), is cancelled. Furthermore, thie gtabn propagator is with this wave
functional given by the inverse of the variational keragel

(AA) = (2w) 1, (2.2)

which shows thatv has the meaning of the gluon energy. Minimizing the vacuupeetation
value of the Hamiltonian{@/|H |) — min, one finds [8] for the gluon energy the result shown

in Fig. 1 (dashed line). At large momenta it behaves like thetgn energyw(k — o) ~ k and

is infrared divergento(k — 0) ~ 1/k. This, of course, is the manifestation of the confinement of
gluons. Figure 1 shows the lattice results [9] for the glummppgator (2.2), which can be fitted by

Gribov’s formula.
|V|4
w(k) =1/k2+ e (2.3)

with the effective mas$l ~ 880 MeV. Also shown in this figure is the result of the variatib
calculation [8]: as can be seen the gluon propagator olatdine the variational calculation agrees
quite well with the lattice data in the infrared and the wlitoéet, while there is some missing
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Figure 1: Comparison of the gluon propagator Figure 2: Form factor of the three-gluon ver-
1/(2w) with Gaussian [8] (dashed line) and non-tex for orthogonal momenta and comparison to
Gaussian [10] (full line) functional to the lattice lattice data for the 3-dimensional Landau-gauge
data [9]. vertex [11].

strength in the mid-momentum regime around 1 GeV. This cammdmed back to the absence of
the gluon loop, which escapes the variational calculatidh the Gaussian type of ansatz (2.1). In
Ref. [10] the variational approach was extended to non-8ansvave functionals including up to

guartic terms in the gauge field

WA =ep-SA),  SA = [wres [N [yat )

To capture the gluon loop in the variational calculation oeeds to include at least the three-
gluon termy®® in the exponent of the wave functional. Then one finds thécsggion propagator
shown in Fig. 1 (full line), which gives a substantial impeovent compared to the propagator
obtained with the Gaussian trial wave functional. Figuréh@wss the result for the three-gluon
vertex. Also shown are the lattice result for the three-glwertex calculated in 3-dimensional
Landau gauge Yang—Mills theory [11]. This theory corregfsmoto the use of the approximate
wave functional (1.3) in 3 1 dimensional Yang—Mills theory in the Hamiltonian apphoa8ince
the expression (1.3) represents a good approximation toubé’ang—Mills wave functional in the
low-momentum regime (see Ref. [12]) we expect the 3-dinteradiLandau gauge lattice result to
agree well with the static three-gluon vertexbn= 3+ 1 Yang-Mills theory. Indeed we find a
quite reasonable agreement between the result of theigaghatalculation and the lattice data in
the infrared.

The above represented solution correspond to the so-aaltaghl (or scaling) solution, where
the horizon conditiord—1(k = 0) = 0 was assumed for the ghost form factigk) defined by the
ghost propagator

(-Ba)™) = d(k) /K2 (2.5)

Figure 3 shows the result of the variational calculation tf@ gluon energy (shown already in
Fig. 1) and the ghost form factor of the full variational ad#tion and the one with the Coulomb
term of the Hamiltonian, Eq. (1.5), excluded. One obserhasthe effect of the Coulomb term is
very small. We will therefore neglect this term in subsequemerical calculations.
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Figure 3: The gluon energy (left panel) and the ghost form factor ngnel) with and without the Coulomb
term.

3. Finite-temperature Yang—Mills theory

To extend Yang—Mills theory to finite temperatures [13, 14] eonsider the grand canonical
ensemble with vanishing chemical potential, which is defibg the density matrix

D =exp[—H/(ksT)], (3.1)

wherek;g is Boltzmann constant. For the evaluation of the thermalaas

Tr(D...)
<. .. >T = T
we need a complete basis of the gluonic Fock space, which wesehin analogy to the ground
state wave functional (2.1) in the form
K= ————1k. (3.9
Det(—D2)

(3.2)

where thelk) form a complete set of states of the gluonic Fock space, wiviglthoose in the
following way: we decompose the gauge field (in momentum espat terms of creation and

annihilation operators L
U
A(K) 20K (a(k)+a( k)), (3.4)

wherecw(k) is an arbitrary (positive definite) kernel. Defining the vacustatelk = 0) by

ak)|0) =0 (3.5)
this state becomes in coordinate representation
1
(A|0) = exp(—E/AwA> . (3.6)
A complete basis of the gluonic Fock space is then given by

10y, a'(k)|0), a'(kja'(K)|o), ... (3.7)
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The exact density matrix (3.1) is too difficult to handle giithe complicated form of the Yang—
Mills Hamiltonian. For this purpose we replace the Yangdd/lilamiltonian in the density matrix
by a single-particle Hamiltonian

D=exp[-h/(ksT)], h= / dkQ(ka'(kjak),  dk=dk/(2m)°. (3.8)

Sinceh s a single-particle Hamiltonian the thermal averages) (8ith the density matrix (3.8) can
be worked out by using Wick’s theorem. For the gluonic octigpanumbers one finds

(a®al (K)r = (2m2s(k—K)nk),  with  n(k) = [exp(Q(K)/(ksT)) =1] ", (3.9)

which are the usual Bose occupation numbers ®itk) representing the single-particle energies.
By means of Wick’s theorem all thermal averages can then peesged in terms of the gluon
propagator

(ARAK))T = (2133 (k+K) (1+2n(K)) / (200(K)). (3.10)

From the density matrix (3.8) we find the entrapand the free energly
S=—ksTrDIND, F=(H);-TS (3.11)

So far the two kernelQ(k), entering the density matrix (3.8), ana(k), entering our basis states
(3.6), are completely arbitrary. We now determi2ék) by minimizing the free energy (3.11).
Instead of taking the variation with respect®gk) it is more convenient to take the variation with
respect to the finite temperature occupation numbgss(3.9), which is equivalent sinagk) is a
monotonic function of(k). This yields

oen, w|
Q) = 55

(3.12)

whereeln, w| = <H>T/(2(N§ -1) -V) is the energy density per gluonic degree of freedbfmis(
the spatial volume). From the analogy with Landau’s liquetrhi theory we identifyQ (k) as a
quasi-gluon energy. Evaluating the thermal expectatidumevaf the Yang—Mills HamiltoniagH )t
up to two loops one finds for the quasi-gluon energy
2 k. a2
%:1+gfc/d—qF(R—Q)% [1+2n(q)]. (3.13)

The kernelw(k) can be chosen, in principle, completely arbitrary (excépt it has to be
positive definite) and the results of our variational cadtioh should not depend on the choice of
w(K). However, since we have introduced approximations (caling the energy up to two loops)
our results do depend an(k). The best we can do is to vary the free enefgfq. (3.11) with
respect taw(k). This guarantees that the free energy is at least to first andependent oév(K).
FromdF /dw(k) = 0 we find the gap equation

w?(K) = k2 + x2(K) + liag[n] + Ic[N] (), (3.14)

where x (k) is the ghost loopliag[n] is the tadpole and.[n](k) the one gluon-loop contribution
from the Coulomb term, see Fig. 4. The finite-temperatureifitations arise exclusively from
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Figure 4: Diagrammatic representation of the contributions to the equation: (a) full ghost loop, (b)

tadpole, (c) one-gluon loop contribution from the Coulortmt. Small black dots and open circles represent,
respectively, bare and full vertices of the Hamiltoniare ttouble line denotes the Coulomb kernel.
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Figure 5: Diagrammatic representation of the ghost DSE.

the finite-temperature part of the gluon propagator, E4Q.0)3.which depends on the occupation
numbern(k). The finite-temperature modifications are all ultravioleité so the renormalization
of the gap and Dyson—-Schwinger equations can be done inlyetaetsame way as at zero tem-
perature, see Ref. [15]. The gap equation has to be solvedhtgwith the Dyson—Schwinger
equation for the ghost propagator, which is illustratedign b. This equation is the same one as at
zero temperature except that the gluon propagator is reghlay its finite-temperature counterpart
(3.10). As we have illustrated above for zero temperatume,Goulomb term of the Yang—Mills
Hamiltonian does barely influence the ghost and gluon praijeag Therefore we will ignore the
Coulomb term in the following. Neglecting the Coulomb term leads to substantial simptifica
[14]. The quasi-gluon energ® (k) of the density matrix (3.8) and the kerr®lk) of the vacuum
wave functional (3.6) become then identical. Furthermtive,ghost Dyson—Schwinger equations
and the gap equation then decouple from the Dyson-Schwisgeation for the Coulomb form
factor [7].

4. Infrared analysis

Before we present the numerical results let us summarizeethidts of an infrared analysis for
the remaining gap and ghost Dyson-Schwinger equationsud fitst recapitulate the result of the
infrared analysis at zero temperatures [16].

For the infrared analysis we assume power-law behavioutsegbropagators involved

w(p—0)=A/p%, d(p— 0)=B/p’. (4.1)

Assuming the horizon conditiati—*(p = 0) = 0, which impliesB > 0, we find from the ghost DSE
the sum rule

a=2B+2-d, (4.2)

Iwe should, however, stress that the Coulomb term is utterpyoitant for the quark sector since it provides the
confining potential for the quarks, see further below.
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whered is the number of spatial dimensions. For Coulomb gaugk=n3 we obtaina = 23 — 1,
and including also the gap equation one finds the following $autions

B=1(1001), B =0.796(0.794), (4.3)

where the results from the numerical evaluation are givehérbracket. Ird = 2 dimensions one
finds a single solution, which within the angular approxiiois given by

B =0.5(0.45) (4.4)

while without the angular approximation one fingls= 0.4.

At arbitrary finite temperature the infrared analysis cdrb@carried out since the gluon en-
ergyQ (k) = w(k) enters the thermal occupation numbefis), Eq. (3.9), in the exponent. However,
at very high temperatures we can expand this exponent arattiupation numbers reduce to

n(k) = ke T /o(K). (4.5)

Thenw(k) enters only as power in the gap and DSE and we can carry outfitaeed analysis in
the standard fashion. One finds the same sum rule Eq. (4.2zascatemperature. However, one
obtains only a single solution for the infrared exponent

B=1/2, a=0. (4.6)

This is the infrared exponent for the ghostdr= 2 dimensions, which reflects the fact that at high
temperature a dimensional reduction to the P-dimensional theory occurs.

5. Numerical results

Figure 6 shows the ghost infrared expon@ntetermined from the numerical solutions as
function of the temperature. As one observes the infrarpdmant stays constant below a critical
temperature where it suddenly drops and approaches the Baki1/2 for high temperatures,
in agreement with the infrared analysis. Both zero-tentpegasolutions3 = 1 andf3 = 0.796,
convert to the same high-temperature solution. Figuresd78ashow the numerical solutions for
the ghost form factor and the gluon energy for zero temperatimd above the deconfinement
temperature. One observes that the infrared behavioudéethin accord with the findings of the
infrared analysis. The sudden drop of the infrared expoohie ghost form factor (see Fig. 6) can
be used to define the deconfinement phase transition terapefatFitting atT = 0 the numerical
solution forw(Kk) to the lattice gluon propagator [9] to fix the physical scaie tinds for the critical
temperature of the deconfinement phase transition

Te ~ 270...290 Mey, (5.1)

for SU(2), which compares well with the lattice result @f= 295 MeV.
Figure 9 shows the infrared mass of the gluon defined by thenghunergy at the numerical
infrared scale\|r,
m(T) = w(k=AR,T). (5.2)
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Figure 6: IR exponent of ghost as function of Figure 7: The ghost form factor.

the temperature.
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Figure 8: The gluon energy. Figure 9: The IR mass of the gluon.

This mass behaves similarly as the infrared exponent of llestgform factor. It stays constant
below a critical temperature, where it suddenly drops arter éfiat starts rising linearly with the
temperature. Zooming into the behaviournofT) in the transition regime of Fig. 9, see Fig. 10,
one finds for the critical exponent of the effective gluon sndsfined by

m(T) ~ (T/Te—1)" (5.3)

a value ofk ~ 0.37. This compares well with the result of= 0.41 obtained in Ref. [17], where
a quasi-gluon picture has been used to fit the lattice refarlthe energy density and the pressure,
and assuming furthermore input from tthe- 3 Ising model, which is in the same universality class
asSU(2) gauge theory.

Figure 11 shows the running coupling constant at zero teatyner and above the deconfine-
ment phase transition. One observes a substantial reduitibe low energy plateau.
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Figure 10: Critical behaviour of the effective Figure 11: Running coupling constant from the
gluon mass. ghost-gluon vertex.

6. Hamiltonian approch to QCD
When the quarks are included the Hamiltonian (1.4) has tapplemented by the quark term
Ho= [ ') [a (p+9A) + Bmo] a(x), (6.1)

whereq(X) denotes the quark field operator amg is the current quark mass. Furthermore, the
matter charge density in the Coulomb Hamiltonian (1.5) beespd(x) = qf(x)t?q(x), wheret?
are the generators of the gauge group in the fundamentasemation. For the quark sector we
use the following ansatz for the vacuum wave functional [18]

\¢>Q:eXDUq* (SB +va-/3) q} 0), (6.2)

where |0) is the perturbative quark vacuum state, which describestemsyof free quarks with
masshy. FurthermoreSandV are variational kernels to be determined by minimizing thergy
density. FolvV = 0 Eq. (6.2) defines a BCS-type wave functional considerecein [R9]. The new
important aspect of the wave function (6.2) is the couplifighe quarks to the gauge field with
form factorV. Without this term the quark-gluon coupling in the quark Hlgonian (6.1) escapes
the expectation value. The total QCD wave functional is tipgan by

|CD> = |w>YM ® |(p>Q7 (6.3)

where|y)yy is the Yang—Mills vacuum wave functional given in Eq. (2.We keepw fixed at
its form determined from the Yang-Mills sector. We minimibe quark energy(Hg)q)ym With
respect to the kerneBandV. The result of this variation is shown in Fig. 12. Figure 18wgares
the scalar form factor with and without taking into accoumd tjuark-gluon coupling. With the
guark-gluon coupling switched off/(= 0) we find the value for the quark condensate

— 3
(@) = (~113 MeVy/0c /0y, ) (6.4)
which corresponds to the result of Ref. [19], while with theak gluon coupling included/(+ 0)
we obtain 5
(Ga) = (—135 MeV\/oc/aW> . (6.5)

10
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Figure 14: Running quark mass.

This is an increase of the figure in the bracket by about 20%&ds (6.4) and (6.50. and g
denote respectively the Coulomb and Wilsonian string tansLattice results show that the ratio
of these quantities is given in the range of

Oc/Ow~2...3. (6.6)
This implies a quark condensate in the range of
(qq) = (—191...234 MeV)®, (6.7)
which compares well with the phenomenological value of
(qQ) = (—230 MeV)>. (6.8)

Figure 14 shows the dynamical quark mass as a function of ttrmentum with and without
the quark gluon coupling. We observe an essential incregbe iquark mass when the coupling of
the quarks to the gluons is included. For the constituentkguass defined by the zero momentum
value of the running quark mabks= M (k= 0) we obtain without the quark-gluon coupling & 0)

11
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and with the quark-gluon coupling included ¢ 0)

M =132 MeVy/0oc/ 0w, (6.10)

which is an increase by 57%. Assuming again the lattice r&sul(6.6) for the ratio of the string
tensions we obtain [18] constituent masses in the range of

M = 187...230 MeV, (6.11)

which brings the constituent mass into the region of its phegnological value.
The results obtained so far in the variational approach t@@CCoulomb gauge are very
encouraging and call for more detailed investigations.
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