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1. Introduction

The infrared properties of the Landau-gauge QCD Green functiomestieen triggering many
studies in the last few years, mainly involving both lattice (see for instancse. Ref3] ) and
continuum approaches (see for instance Refs. [4-12] using Dysbwinger equations (DSE),
[13—16] using the refined Gribov-Zwanziger formalism, [17] using thecCkerrari model as an
effective description) or based on the infrared mapping @f and Yang-Mills teories [18].

Most of the DSE analysis take advantage of approximating the ghost-ghrex\by a con-
stant when truncating the infinite tower of the relevant equations. To be pnecgse, only the
behaviour of the involved transverse form factor needs to be apprtednty a constant for the
purpose of truncating the ghost propagator DSE (see also the reqent[f9]). Most of the ammo
for the approximation of the ghost-gluon vertex and GPDSE truncation is maiolyded by the
Taylor theorem which is widely known as a non-renormalization one [20iis Tlaims that, in
the particular kinematical configurations defined by a vanishing incomingtghomentum, no
non-zero radiative correction survives for the Landau-gaugsteglaon vertex, which takes thus
its tree-level expression at any perturbative order [20]. This stateemeails two important conse-
quences: that (i) the bare ghost-gluon vertex, defined by

rﬁbc(—q,k;q—k) = —gof?° <quH1(q,k)+(q—k)qu(q,k)> , (1.1)

is UV-finite for any kinematical configuration; and that (ii) in the specific MG@kheme where
the renormalization point is taken with a vanishing incoming ghost momentum (wigaramed
the Taylor scheme —T-scheme— in [21]) the renormalization constant fghtist-gluon vertekis
exactly 1. This allows for a precise lattice determination of the strong runmingling defined
in T-scheme? that can be confronted to perturbative prediction in order to estimgte[21, 23,
24]. The transverse character of the gluon propagator, in the Lagalage GPDSE kernel, allows
to project out theH,-form factor from expression (1.1). Therefore, we have chosesaliothe
surviving piece, i.eHs, the transverse form factor. Extending this nomenclature, wettathe
longitudinal vertex form factor.

A precise determination of the ghost dressing function obtained by solvenGBDSE, to
be confronted for instance with lattice data, thus requires a corresgindgirecise knowledge
of the transverse form factd#;. To investigate the non-perturbative structure of that form factor
was one of main goals of ref. [25], which we will pay attention to in this contitiou That was
accomplished, as will be also shown here, by studying the non-pertweli3E corrections to the
perturbative form factor. The non-vanishing dimension-two gluon ensdte{A?), plays a crucial
réle for the leading non-perturbative contribution. This condensatgveagd not to be neglegible
when studying the running of the QCD Green functions [21, 23, 2688 ery specially from the
analysis of the running of the T-scheme coupling computed by means of lattiagkagons with
2+ 1+ 1 twisted-mass dynamical flavours in ref. [32], as will be also shown here

1it can also be straightforwardly concluded that the Landau-gauggt-giiison vertex renormalization constant,
is exactly 1 in thevs scheme.
2]t has been also used to define an effective charge that could bedafiplighenomenological purposes [22].
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2. The OPE for the T-scheme running coupling and (A?)

A very recent analysis [32] of the strong coupling in T-scheme,

=1 {Taylor theor}
G(q?, A?)F2(?,A?) (Ha(a,0) + Hz(0,0)) (2.1)

where the bare ghost and gluon dressing functi@andF, were computed from lattice simula-
tions with 24+ 1+ 1 twisted-mass dynamical flavours, provided with a very strong evidemabd
necessity of applying non-perturbative corrections to account fautm@ng of the coupling,

¥ /B0 2 (2 /A2
9 a2 0P G2 () (AR
2\ __ pert, 2 e pert, 2 pert, 2 T ,%
aT(u ) - aT (u ) 1+ uz R<aT (I"l )7aT (qO)) (a-ll;_)ert<qg) 4(Né—1) )
(2.2)

whereR(a, ap), y'c’,*2 anda#Jert can be obtained in perturbation and through the OPE analysis (see

ref. [32]). This can be in Fig. 1, borrowed from [32]. The left pldiogis the lattice data for
the Taylor coupling multiplied by the square of the momentum plotted in terms of thiddop
perturbative value of the coupling at the same momentum, with a bestAjgfwhich gives

ays(mz) = 0.11989), (2.3)

in very good agreement with PDG [33]. One should notice that the depdrtam zero for the
lattice data in the plot can be only explained by non-perturbative contribudiehéhat the Wilson
coefficient for the Landau-gauge gluon condensate successfidtyides the non-flat behaviour
from the data up tarPe" ~ 0.32 (the solid line given by Eq. (2.2)), which roughly corresponds to
p ~ 3.5 GeV. The right plot shows the best-fit of Eq. (2.2) to the lattice data, witbsfit value

of

0*(6) (A*)rg = 4.5(4) GeV?, (2.4)

wherqu =100 Ge\~. These are of course estimates Aqjs and the gluon condensate including

2 degenerate light quarks and two non-degenerates heavier ongalldWs to run in perturbation

the coupling value up to cross safely the bottom mass threshold and ruruagaiget a “physical”
estimate for the coupling at th&’-mass scale, that can be directly (and successfully) compared
with experimental results. The same analysis had been previously appligtdde tata in pure
Yang-Mills QCD (N; = 0) [21] and withN; = 2 twisted-mass dynamical flavours [23], providing
with estimates for the gluon condensate slightly depending on the number ofjlighk flavours,
although roughly ranging from 4-6 Gé\hen statistical uncertainties are included.
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Figure 1. (Left) deviation from the lattice data with respect to thediction of the four-loop perturbative
theory, with the best-fit of\, plotted in terms of the perturbative running; the solicIshows the leading
non-perturbative OPE prediction, Eq. (2.2)’s r.h.s. (Rigfhe strong running coupling in Taylor scheme
defined by Eq. (2.1) obtained over a large momentum range fattice QCD in ref. [32]. The dotted
line stands here for the best-fit with Eq. (2.2), while thédsohe includes a higher-order power correction
effectively behaving as- 1/p°.

3. The OPE for the ghost-gluon vertex

We will now pay attention to (and describe with more details) the OPE procegpiesd in
ref. [25] for the Landau-gauge ghost-gluon vertex,

Vit(—a.kia—k) = M7 (—a.kia—k) Gyl (a—k) F*¥(a) F* (K)
_ / dy o' d40% ek (T (c5(y)AL (x)22(0)) ) 3.1)

is quite similar to the one described in ref. [21]. Here, the OPE expansadiread

VE(—g.kiq—k) = (do)3™(a,k)

+ (b @ k) (ATOAN(0):) + - (3:2)

wheredp accounts for the purely perturbative contribution to the vertex, while

W2 = () o0 (0, K) 6% gy

— 20 2l 2@ g8y o446 (3.3)

wherée
g-k

1 = -k»- - — > - = »—g
Ne 5 (0—K)olo \,ap .
=5 g W\é?eéu(—q,k,q—k) ) (3.4)

3N¢ is the number of colours.
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the tree-level ghost-gluon vertex being

. : g

Vt?géu(—%KQ— k) = —'m fakc g, U (A—K) (3.5)

while
[ _ m) d——k
s ae ! { k— —q
Ne — K)ok
— - s VR (aka- k. 36)

and

-

N ko
= 50 e Vet —aka—k) 3.7)

The other contributions/345, can be immediately written using the previous results:

g-k

=3 >+ Kk

Neg?  Ncg? .
= <4k2+ 7@ Ve (—a,k g —K)

(3.8)
and |
A
204 18 = 2x Nt
- Nc(quk)z Vabe, (~q ki~ k) @9

In all cases, the blue bubble refers to a contraction of the colour arehtoindices Witt%éabguv.

We have also introduced the notatiglﬁ, (0) =guv — /‘2# for the transverse projector.

Then, one obtains

W — ¢ (S\/(q,k)—i-SF(k)—i-SF(Cv‘i‘sG(kq)) Vijeeu(—a,k:q—K) (3.10)
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with

ss(0) = 5(q) —2’2,
Ne (, (9—K)-q (k—q)-k  k-q
<2 I k2q2> |

se (resp. sg) comes from the OPE corrections to the external ghost (resp. gluoppgator,
i.e. from the non-proper diagrams in Egs. (3.8,3.9) androm the proper vertex correction in
Egs. (3.4,3.7). The OPE corrections to the proper vertex can be obfeimethere, remembering
that the bare ghost-gluon vertex reads as:

2

sv(q,k) = (3.11)

iR -akia-K) = ~g0f a6+ - K@) (3.12)
Then, in Landau gauge, only the form fackdr survives in the Green function to give:
Vi*(—a,kiq—k) = ~igof**au gy, (a—KHi(a,k) G((q—k)?) F(?) F(k?), (3.13)

whereG andF are the gluon and ghost dressing functions for which we previously ctadjhe
non-perturbative OPE corrections. Thus, one would have:

Hi(a,k) = HP*(q,k) (1 0 2L gt qt it gk 3.14

1(a,k) = Hy 7 (6,K) [ 1+sv(a.k) <=+ O(g",qa "k "qg%k™e) ). (314
4NE—1)

All the non-proper corrections have been removed in the usual waw, Moorder to compare
all over the available range of momenta with some current lattice data, we nésdidomodel
the low-momentum behaviour, non-accessible via our previous OPE andlyss is also done in
ref. [25] and will be described in the next section.

4. The Euclidean ghost-gluon vertex and the present lattice data

We will now devote this section to model the transverse form factor of théidean ghost-
gluon vertex,Hy, on the ground provided by Eq. (3.14), and compare the result with seceatr
lattice data for this form factor computed in different kinematical configunatio

4.1 The model for the Euclidean ghost-gluon vertex

In Euclidean metrics the bare ghost-gluon vertex can be written very simikarly a

Mooce(—0.kig—k) = igof2 <quH1(q, k) +(q— k)qu(q,k)> : (4.1)

where the form factor; plays a crucial réle when solving the ghost-propagator Dyson-Sclawving
equation (GPDSE) as discussed above. The OPE non-perturbatieetams to the form factor
H; were obtained in Eq. (3.14), but that result is in principle only reliable fagdanougtk, q
and g — k since the SVZ factorization on which it relies might not be valid for low momenta.
Nevertheless, in the following we will propose a very simple conjecture toextg. (3.14) to any
momenta, which will provide us with a calculational model for the ghost-gluotexé¢o continue
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research with. In particular, the perturbative part of the ghost-gleotex is usually approximated
by a constant behaviotrif we then apply a finite renormalization prescription such that

Zl(ﬂz) Hl(qa k)’pz =1, (42)

where the renormalization momentum?, for a given kinematical configuration (for instance,
q—k =0 andg? = k? = p?) is chosen to be large enough, on the basis of Eq. (3.14), we can
conjecture that

212 gy _ 5-1 Ncg? (A%)
Hl(qvkae)_zl l+8(N(2:—1)

y ( Vk2g2cos@ Lo o? — \/k202 coso

k2GR + e QR(0? + K2 — 2,/qPk2 cosB) + e,

+2

2 22
ks — \/k?g? cosO ) ’ (4.3)

K2(cR + k2 — 2/Pk2 cosB) + ik

gives a reasonable description of the ghost-gluon form fadtall over the range of its momenta

g andk, where®@ stands for the angle between them. The purpose of Eq. (4.3) is to keepithe ma
features of the momentum behaviour of the ghost-gluon form factor prduigt the OPE analysis
and to give a rough description of the deep IR only with the introduction wiesiR mass scale,
mr, that can be thought as some sort of IR regulator (related to some kiffféctivee gluon mass)
and which is mainly aimed to avoid the spurious singularities resulting from thee@p&nsion in
momentum inverse powers.

Of course i being large enouglz; can be approximated by some constant value forigny
because the logarithmic behaviour of the ghost-gluon in perturbation thasrgeen proven to be
very smooth [36, 37]. Thus Eg. (4.3) provides us with a very econormodlel because one needs
nothing but some infrared mass parameter which, being related to the gluonisnagsected to
be~ 1 GeV, to parametrize the deep infrared behaviour of the ghost-glucsveese form factor.
It should be noted that, although the ghost-gluon vertex form factorsotdiverge, the gluon
condensate does: itis the product of the Wilson coefficient and of tidersate which is expected
to remain finite thanks to a delicate compensation of singularities, in the sum-pplexah. Then,
both the Wilson coefficient and the condensate should be renormalizéidtifgysome particular
prescription, and both shall depend on a chosen renormalization momentigris €xplained in
detail in the work of ref. [31] where the Wilson coefficient for the quarkpagator is included
at order&(a*). Since we carry out the computation of the Wilson coefficient in Egs. (2#-3
only at tree-level and neglect its logarithmic dependence, we do nofyspey renormalization
momentum for the gluon condensate.

4At least for large momenta, this seems to be the case in lattice simulatio®5[3d; several kinematical config-
urations, and so is confirmed also by the perturbative calculations if8&f37].
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4.2 Comparing with available lattice data

Some SU(2) and SU(3) lattice results for the ghost-gluon vertex are aegiitethe literature
(see for instance Refs. [34,35]). In particular, Cucchieri et alveheomputed the tree-level-
tensor form factor in SU(2) for three kinematics £ q— k is the gluon momentum angl the
angle between the gluon and ghost momenta) : pPl) g? and ¢ = 17/2, (2) p> = 0 and (3)
¢ = /3 with p?> = g = k? ([34]). As can be seen in the left pane of Fig. 2, when we plug
g%(A%) = 6 Ge\?, mg = 1.4 GeV andZ; ! = 1.04 into Eq. (4.3), the prediction for the form factor
H, appears to agree pretty well with the SU(2) lattice data for the three kinemedicfidjurations
above mentioned. It should be also noted that the OPE prediction withoutftheethcompletion
through the introduction afnr given by Egs. (3.11,3.14), plotted with dotted lines, also accounts
very well for lattice data in the intermediate momenta region, above roughi@@V. Furthermore,
the value for the gluon condensate lies in the same ballpark as the estimlatased from the
SU(3) analysis of the Taylor coupling in ref. [21]. This strongly suppdinat the OPE analysis
indeed captures the kinematical structure for the form fadtorOn the other hand, the infrared
mass scale, as supposed, is of the order of 1 GeV and the (very cIo)sveetIcnlaforZ{1 accounts
reasonably for perturbative value By that we approximated by a constant. Thus, after paying
the economical price of incorporating only these two more parameters, kil tdso reasonable
values, we are left with a reliable closed formula for the form factor atgumyn or ghost momenta.
This is a very useful ingredient for the numerical integration of the GRDSE

H,(a.k)

— (aK)’=K p=m2
09~ — (K=K p=mv3|
(@k*=0 1

Figure 2: (left) The predictions of the model fdtl; (solid lines) in Eq. (4.3) and the OPE result without
infrared completion (dotted lines) in Eqg. (3.14) confrahte the SU(2) lattice data borrowed from ref. [34]
for the three kinematical configurations described in thénrtext: (k —g)? = o for ¢ = 11/3 (violet) and

¢ = /2 (red) and k—g)? = 0 (green). (right) The results of the model féf in the SU(3) case and for the

following kinematical configurationsk? = ¢? for 8 = 711/3 (violet) andd = /2 (red) andk? = 0 (green).

The SU(3) results published by the authors of ref. [35] appear to benasy and cannot
be invoked to properly discriminate whether a constant behaviour closert&q. (4.3) accounts
better for them. However, we can now take the mass paranmgerfrom the previous SU(2)
analysis and the well-known SU(3) value figir(A?), assumévlf1 =1 and use Eq. (4.3) to predict

5In ref. [21], g?(A?) is evaluated through an OPE formula with a tree-level Wilson coefficiene 6. GeV? at a
renormalization point of 10 GeV.
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the ghost-gluon transverse form factbl,. This is shown in the right plot of in Fig. 2 for three
different kinematical configurations and, as can be seen, the deviftionsl appear to be very
small in all the cases and compatible with the results shown in Fig. 4 of reffdB8Hje vanishing
gluon momentum case.

4.3 The Taylor kinematics and the asymmetric gluon-ghost vertex

The kinematical configuarition where the incoming ghost momentum goes tgkzer®) is
especially interesting, as this is the one which one defines the T-schenses felngwn in sec.2).
Let us pay some additional attention to it. In this particular kinematical limit, it is exabtigined
up to all perturbativBorders:

raoe. (—a,0,0) = —gf*qy . (4.4)

At any order of perturbation theory, this implies tia{ g, 0) +H2(qg,0) = 1. According to Eq. (4.3),
one would have

N @ ) . (4.5)

(N—1) o*+mi

An interesting question to investigate is whether such a genuine non-eiarborrection still
survives for the full ghost-gluon vertex in the Taylor limit, and not only tlee transverse form
factorH;. Said otherwise, does eq.(4.4) maintains its validity upon adding the OPEtonse
related to(A?) to it, or not? This question have been properly addressed in ref. [2&renthe
asymmetric ghost-gluon vertex is studied and one is left with

(@0 = 2 (140,

ra(—q,e;,q—¢) = —gfae <qu Hi(g,€) + (a—¢)y Hz(q7£)) + - (4.6)
where

,(q—g€)-q (A%
?(q—¢€)2 4Ng—-1)’
(a—¢g)-9® (A%

Hi(g,€) = HP*Y(g,€) + Nc g

H — HPpert _ 2 ) 4.7
2(q>£) 2 (qa 8) Nc g qz(q_ 8)4 4(Né — 1) ( )

Thus, after taking the limig — 0, one will have:
rab(—q,0;q) = —gfa®°q ( HP*(q,0) + ngft(q,0)> = —gf®q, . (4.8)

Thus, the result applied in Eg. (2.2) to define the T-scheme coupling igsemmh This confirms
that no non-perturbative OPE correction survives in the propertghiosn vertex in the Taylor
limit, although both form factorkl; andH, separately undergo such a kind of correction.

6The same argument of Taylor's perturbative proof still works if omesider the Landau-gauge ghost-gluon vertex
DSE: a vanishing ghost momentum entering in the vertex implies the contrasftibe gluon-momentum transversal
projector with the gluon momentum itself for any dressed diagram. ThaydofTs theorem is still in order within the
non-perturbative DSE framework. Some attention have been recentdygpthe ghost-gluon vertex DSE [38].
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5. Conclusions

The momentum behaviour of the ghost-gluon vertex has been studied ithework of the
operator product expansion (OPE). This approach has alreadypbbeeed in the literature to be
very fruitful in describing the running of two-point gluon and quark &rdunctions and of the
strong coupling computed in several MOM renormalization schemes. In gartithe coupling
derived from the ghost-gluon vertex renormalized in T-scheme, whiohbeadirectly computed
from nothing else but the ghost and gluon propagators, led to a vetyadeadetermination of
Nqcp When its running with momenta obtained from the lattice estimate has been codfvatite
the OPE prediction, although only after accounting properly for a dimesisiomgluon condensate,
(A?). The same approach is followed to study the ghost-gluon vertex and sgigeidion is payed
to the transverse form factor for the ghost-gluon vertex, preciselyribdlat plays a crucial réle
for the truncation and resolution of the GPDSE and that, in this context, ilyiapproximated by
a constant. In this way, a genuine non-perturbative OPE correction pethgrbative part for the
transverse form factor is obtained. A very simple conjecture, made tocetterOPE description
beyond the momentum range where the SVZ factorization is supposed to efirks with a
simple model describing the momentum behaviour of the ghost-gluon fornr.fattis model was
shown to agree pretty well with a lattice SU(2) computation for several kineahabofigurations
of the ghost-gluon vertex, when the value for the gluon condensate is gathe ballpark as the
one that is estimated from the running of the T-scheme coupling in SU(3) latiagegtheory.
This successful comparison with the available lattice data provides us wittgstrdications that
(i) the OPE framework helps to account for the kinematical structure oftibstegluon vertex at
intermediate momentum domain and (ii) that it helps to cook up a reliable model, imgeigood
parameterization also for the IR domain, to be plugged into the GPDSE to tejerdde ghost
propagator lattice data. Finally, we also proved that, in the particular kinerlatiiaassociated
with the Taylor theorem and hence by the T-scheme (a vanishing incomirsg igloonentum), the
corrections to the longitudinal and transverse form factors cancelsiggach other and that the
tree-level result for the ghost-gluon vertex is thus recovered.
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search project FPA2009-10773 and “Junta de Andalucia” by PO7TFZIER.
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