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1. Introduction

The covariant approach to bound-state calculations provides a very powerful tool for the study
of relativistic two- and three-body bound states. When applied to hadrons, they rely upon the
knowledge of QCD Green’s functions. The intrinsic sophistication of these equations, however,
presents several difficulties in practical applications due to the complexity of taking such calcula-
tions beyond the simplest truncation known as Rainbow-Ladder (RL).

It is only in recent years that a unified approach has been reached for the study of mesons
and baryons, with quark-diquark calculations [1 – 5] surpassed by their more intricate three-body
description [6 – 8]. At the same time however, significant technical progress has been made in
the covariant treatment of mesons beyond the RL truncation [9 – 11]. In the case of baryons, these
calculations are, due to technical difficulties, so far restricted to particles composed of quarks of the
same mass. Therefore it is not feasible for the moment to calculate the plethora of baryon masses,
as is done in other approaches such as constituent quark models (see, e.g. [12] and references
therein). Nevertheless, one of the main goals of the approach must be to identify the relevance
of the different quantum-field-theoretical interaction terms in bound-state phenomena, and in this
respect it represents an excellent tool that is complementary to lattice QCD.

So far, the calculation requires to model the quark-gluon interaction via an effective inter-
action. However, it is interesting to note that studies within RL have been dominated by just one
effective interaction, known as the Maris-Tandy model [13, 14]. On the one hand, this dominance is
well-earned since this ansatz performs very well indeed. On the other hand, with the swift improve-
ment in our knowledge of QCD Green’s functions from both lattice and functional approaches, it is
possible to define different effective interactions which, presumably, capture more faithfully some
of QCD’s features. Note that this is not to say that they will perform better phenomenologically.
Therefore, before the daunting challenge of bringing covariant baryon studies beyond RL (such as
the inclusion of pion-cloud effects and three-body forces) or drawing conclusions about the role
of these different contributions, one should thoroughly investigate the model-independent features
within a given truncation scheme.

2. Framework

2.1 Bound-state equations

The covariant description of bound-state equations begins with Dyson’s equation for the con-
nected and amputated n-quark scattering matrix T :

T = K +KG0T , (2.1)

where G0 is the disconnected n-quark dressed propagator and K is the n-body kernel that details
the interaction between the quarks that constitute the bound state.

It is this interaction kernel K that proves to be challenging. For mesons we must respect
chiral symmetry in order to realise the pion as a (pseudo)-Goldstone boson. This gives a precise
relationship between the truncation of the quark-propagator Dyson-Schwinger equation (DSE) and
the truncation of the 2-body kernel here. The simplest example of a symmetry-preserving kernel is
that of Rainbow-Ladder (RL), though more sophisticated kernels have been studied [9 – 11].
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2.2 Quark propagator and DSE

The first ingredient for covariant bound-state studies is the dressed quark propagator,

S−1(p) = A(p2)
(
ip⧸+M(p2)

)
, (2.2)

where 1/A(p2) is the quark wave-function renormalisation and M(p2) is the quark mass function.
These scalar dressing functions are obtained as solutions to the quark DSE,

S−1(p) = Z2 S−1
0 +g2 Z1 f

∫ d4k

(2π)4 γµS(k)Γν(k, p)Dµν(q) , (2.3)

where q = k− p is the momentum of the exchanged gluon. Here S−1
0 (p) represents the bare inverse

quark propagator, obtained from Eq. (2.2) by setting A(p2) = 1 and M(p2) = m0. This bare mass is
related to the renormalised one via Z2m0 = Z2Zmmq, with Z2 and Zm the wave-function and quark-
mass renormalisation constants, and Z1 f that of the quark-gluon vertex. The cardinal input in the
quark propagator DSE (2.3) are the gluon propagator Dµν(q) and the quark-gluon vertex Γν(k, p).

2.3 Rainbow-Ladder

The quark-gluon interaction that appears in DSE for the quark reads:

Z1 f
g2

4π
Dµν(q)Γν(k, p) . (2.4)

In Landau gauge, Dµν is just the transverse projector Tµν(q) = δµν − qµqν/q2 multiplied by the
scalar gluon dressing function Z(q2)/q2. The quark-gluon vertex Γν(k, p) is decomposed as twelve
Dirac covariants, of which the minimal set in Landau gauge numbers eight. The full vertex can be
written as the sum of its bare tree-level part plus a self-energy correction: Γν(k, p) = Z1 f γν +Λν .

The RL truncation requires that we replace the complicated structure of the quark-gluon vertex
with the γµ projection of the non-perturbative corrections. Hence Eq. (2.4) becomes

Z1 f
g2

4π
Tµν(q)

Z(q2)

q2

(
Z1 f +Λ(q2)

)
γν , (2.5)

where now Λ(q2) is the non-perturbative dressing of the γν part of the quark-gluon vertex, restricted
to depend only on the exchanged gluon momentum. The remaining structures are as before. If one
wishes to draw a distinction between the gluon dressing Z(q2) and the quark-gluon dressings, it
can be useful to define the function ΓY M(q2) ≡ Z1 f +Λ(q2). This distinction is very important
because the gluon propagator is by now well-known from both Lattice studies and other functional
approaches. However, if one wishes to take a purely phenomenological approach one can instead
combine all scalar dressings into one effective running coupling, αe f f (q2):

Z1 f
g2

4π
Dµν(q)Γν(k, p) = Z2

2 Tµν(q)
αe f f (q2)

q2 γν . (2.6)

In all cases, the Dirac structure remains the same, and Z2
2 follows from the Slavnov-Taylor identities

to maintain multiplicative renormalisability. When it comes to discussing the possible impact of
effects beyond RL, it is convenient to think in terms of the separate dressing functions Z and Λ.
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The symmetry-preserving two-body kernel corresponding to this yields the ‘ladder’ part of
RL. For simplicity we quote this in terms of αe f f ,

K2-body = 4π Z2
2

αe f f (q2)

q2 Tµν(q)γµ ⊗ γν . (2.7)

For the baryon, the three-body kernel K3-body is decomposed into a three-quark irreducible contri-
bution K3-body

irr and the sum of permuted two-body kernels K2-body
(a) , with the subscript a indicating

the spectator quark:

K3-body = K3-body
irr +

3

∑
a=1

S−1
(a)⊗K2-body

(a) . (2.8)

Note that for mesons the two-body kernel describes quark-antiquark correlations, whilst in the
baryon it pertains to quark-quark correlations. Motivated by the success of quark-diquark calcula-
tions, we ignore K3-body

irr .

2.4 Model interaction

When one constructs a model interaction our first constraint is that of perturbation theory. This
only fixes the large momentum behaviour, leaving the IR behaviour unspecified. This is typically
chosen such that Dynamical Chiral Symmetry Breaking (DCSB) is realised. The chiral conden-
sate, or equivalently the pion decay constant, determines the strength of chiral-symmetry breaking.
These are fixed to their phenomenological/experimental values, respectively. With a symmetry
preserving truncation protecting the chiral behaviour, such chiral properties are guaranteed and the
characteristic mπ ∝ m1/2

q behaviour is seen for ‘small’ mq.
The vector meson mass is similarly determined, to a large degree, by the strength of breaking

of chiral symmetry, albeit linearly with respect to the quark mass. That the interaction thus far con-
structed also works well here is not surprising, since the vector mesons are 1S states and similarly
insensitive to L.S couplings present in the γµ ⊗ γµ interaction, that in RL are too attractive. Of
course, meson bound-states with different quantum numbers are not so easily described. This is
particularly true for the ground-state axial vectors which are significantly overbound here.

In the present work we employ two model interactions. In the Maris-Tandy (MT) model [13,
14] the effective running coupling is given by

αe f f (q2) = πη7 x2 e−η2 x +
2πγm

(
1− e−y

)
log [e2 −1+(1+ z)2]

,

x = q2/Λ2 ,

y = q2/Λ2
t ,

z = q2/Λ2
QCD ,

(2.9)

and features a Gaussian distribution in the infrared that provides dynamical chiral symmetry break-
ing. It is characterized by an energy scale Λ = 0.74 GeV, fixed to give the pion decay constant, and
a dimensionless parameter η . Many ground-state hadron observables have been found to be almost
insensitive to the value of η around η = 1.8. The second part reproduces the one-loop running cou-
pling at large, perturbative, momenta. It includes the anomalous dimension γm = 12/(11NC −2N f )

of the quark propagator, and we use γm = 12/25, ΛQCD = 0.234 GeV and Λt = 1 GeV. Note that
we also employ a Pauli-Villars like regulator with a mass scale of 200 GeV. The quark masses at
µ = 19 GeV are 3.7, 85.2, 869 and 3750 MeV for the u/d, s, c, and b quarks, respectively.
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The Alkofer-Fischer-Williams (AFW) model [15], on the other hand, is motivated by the desire
to account for the UA(1)-anomaly by the Kogut-Susskind mechanism. The effective coupling is
constructed as the product of the gluon dressing [16] and a model for the non-perturbative behaviour
of the quark-gluon vertex [17],

αe f f (q2) = C

(
x

1+ x

)2κ ( y
1+ y

)−κ−1/2(α0 +aUV x
1+ x

)−γ0
(

λ +
aUV x
1+ x

)−2δ0

. (2.10)

The four terms in parentheses are: the IR scaling of the gluon propagator; IR scaling of the quark-
gluon vertex; logarithmic running of the gluon propagator; and the logarithmic running of the
quark-gluon vertex. Additionally, the last two are constructed to interpolate between the IR and
UV behaviour. The remaining terms are defined as follows:

λ =
λS

1+ y
+

λB y
1+(y−1)2 , aUV = πγm

(
1

lnz
− 1

z−1

)
,

x = q2/Λ2
Y M ,

y = q2/Λ2
IR ,

z = q2/Λ2
UV ,

(2.11)

and α0 = 8.915/NC. Here, ΛY M = 0.71 GeV is the dynamically generated Yang-Mills scale, while
ΛUV = 0.5 GeV corresponds to the one-loop perturbative running. The IR scaling exponent is
κ = 0.595353, and the one-loop anomalous dimensions are related via 1+ γ0 = −2δ0 =

3
8 NC γm,

with γm = 12/(11NC −2N f ). We choose N f = 5 active quark flavours at the renormalisation point
µ = 19 GeV. The constant C = 0.968 is chosen such that αe f f runs appropriately in the UV. Finally,
ΛIR = 0.42 GeV, λS = 6.25, and λB = 21.83 determine the IR properties of the quark-gluon vertex
and are fitted such that the properties of π , K and ρ mesons are well reproduced. The quark masses
at µ = 19 GeV are 2.76, 55.3, 688 and 3410 MeV for the u/d, s, c, and b quarks, respectively.

3. Results and discussion

Using the techniques described in [7, 8], we calculated the vector-meson, nucleon, and delta1

masses up to the bottom region using the AFW and MT effective interactions. The results are
collected in Table 1, and their evolution with the pseudoscalar mass (or, equivalently, with the
current-quark mass) is shown in Fig. 1.

Studying different interactions allows to quantify the model dependence within the rainbow-
ladder truncation. We find that the two interaction models yield similar overall trends in the results.
There is little deviation in the resulting hadron masses in the light-quark region, whereas the MT
results tend to underestimate the AFW values for heavier quark masses. In all cases, the agree-
ment with experimental and lattice data is ≲ 10% and comparable to the frequently studied model
dependence in the MT interaction that is induced by the parameter η .

We note that both AFW and MT interactions, which were designed in a different spirit, show
a qualitatively similar behavior in the mid-momentum range around |q| ∼ 0.5 . . .1 GeV which is
the relevant domain for dynamical chiral symmetry breaking. It is this region that provides the
overall strength to ground-state hadron properties, whereas their features are less sensitive to the
deep-infrared region. The same observation has also been made in recent studies exploring the
impact of different model interactions in the light-meson sector [21, 22].

1Assuming isospin symmetry, ∆ and Ω baryons have the same structure, changing only the current-quark mass.
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JPC = 0−+ MT AFW exp.
nn (π) 0.140† 0.139† 0.138
ns (K) 0.496† 0.497† 0.496
ss 0.697 0.686 –
cc (ηc) 2.979† 2.980† 2.980
bb (ηb) 9.388† 9.390† 9.391
JPC = 1−− MT AFW exp.
nn (ρ) 0.743 0.710 0.775
ns (K⋆) 0.942 0.961 0.892
ss (ϕ) 1.075 1.114 1.020
cc (J/ψ) 3.163 3.302 3.097
bb (ϒ) 9.466 9.621 9.460

MT AFW exp.
N 0.94 0.97 0.94
∆ 1.26 1.22 1.23
Ω 1.72 1.80 1.67

MT AFW lattice LPW
Ωccc 4.4 4.9 4.7 4.9(0.25)
Ωbbb 13.7 13.8 14.4 14.5(0.25)

Table 1: Computed meson and baryon masses (GeV) for both MT and AFW interactions, compared
to experiment. Quantities fitted to their experimental values are indicated by a †. Since the heavy-
Omega baryons have not been observed yet, we compare to lattice calculations [18, 19] and a recent
study from pNRQCD [20].
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Figure 1: Left panel: evolution of M(0) as well as ρ , N and ∆ masses with the squared pion mass
for MT and AFW models. Results are compared to lattice data; see [7, 8] for references. Right
panel: vector-meson and triply-heavy omega masses for the two interaction models MT and AFW.
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On the other hand, the impact of DCSB is reduced in the heavy-quark domain where hadron
properties become increasingly sensitive to the heavy quark mass. We have included the value of
the quark mass function M(p2 = 0) in both panels of Fig. 1. Since in the heavy-quark limit the
variation of M(p2) at low momentum is small, its value is indicative of the heavy-quark constituent
mass. Indeed we find that the spread between the AFW and MT results in the vector-meson and
delta channels in the charm and bottom regions follows the same pattern as that of M(0), indicating
that their properties are dominated by the features of the quark DSE rather than the details of the
effective interaction and the structure of the qq kernel that enters the bound-state equations.

In that respect it is interesting to speculate about possible effects beyond the RL truncation.
Such contributions refer to corrections in the quark-gluon vertex as well as additional structures
beyond the vector-vector interaction. Amongst others, they may consist of attractive pion-cloud
corrections in the chiral regime, or repulsive corrections from self-interactions of the gluon. They
have a two-fold effect: firstly, they allow for non vector-vector interactions and a more general
momentum dependence; and secondly, they introduce a quark-mass dependence in the interaction
due to the internal quark propagators that are coupled there. This last point is certainly of relevance
when trying to describe such a wide range of mass scales provided by the u/d to b quarks.

In rainbow-ladder, vertex corrections beyond γν are included in the modelling; otherwise Dy-
namical Chiral Symmetry Breaking would be absent. Since this is done for the light-meson sector,
it implies also that only light quark-dynamics are included. As a result, to determine how much
room there is for beyond-RL effects, one must consider removing those vertex corrections that are
implicitly included. Likely, this can only be achieved for the heavy-quark sector where one expects
vertex corrections to be suppressed. This will be considered in a future work.

4. Summary and conclusions

We have studied the quark-mass dependence of several meson and baryon masses in the RL
truncated Dyson-Schwinger approach. We investigated a broad range of current-quark masses from
the light-quark domain up to the bottom region. To identify model-independent features, we em-
ployed two different effective interactions for the quark-(anti)quark kernel. We find that both mod-
els yield comparable results that agree with experimental and lattice data within ≲ 10% throughout
the quark-mass range, thereby demarcating the model sensitivity within a RL truncation.

The impact of beyond-RL corrections, on the other hand, is easier to access in form-factor
studies where they are needed for a correct description in the chiral and low-momentum region.
In that respect it is desirable to perform a model comparison of nucleon and delta electromagnetic
form factors in the covariant three-body framework. Work in this direction is in progress.
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