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The resolution of Dyson-Schwinger equations leads to the freezing of the QCD running coupling

(effective charge) in the infrared, which is best understood as a dynamical generation of a gluon

mass function, giving rise to a momentum dependence which isfree from infrared divergences.

We calculate the interquark static potential for heavy mesons by assuming that it is given by a

massive One Gluon Exchange interaction and compare with phenomenologyical fits inspired by

lattice QCD. We apply these potential forms to the description of quarkonia and conclude that,

even though some aspects of the confinement mechanism are absent in the Dyson-Schwinger

formalism, the spectrum can be reasonably reproduced. We discuss possible explanations for this

outcome.
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1. Introduction

Understanding low-energy properties of Quantum Chromodynamics (QCD) represents a the-
oretical challenge. The development of nonperturbative techniques are essential in this regime.
Lattice gauge theory [1, 2] constitutes a nonperturbative regularisation scheme which allows nu-
merical solutions of the theory describing properties of interacting QCD matter [3]. The accuracy
of lattice results has been tremendously improved during the past decade with the availability of
more powerful computers [4, 5], and lattice results are considered in many instances the data which
other nonperturbative schemes should reproduce.

The approximate resolution of the Dyson-Schwinger (DS) equations is another nonperturba-
tive approach which has progressed considerably in the lastten years in great part due to the inter-
play between their findings and lattice results. It is a more analytical approach and has led to a very
appealing physical picture establishing that the QCD running coupling (effective charge) freezes
in the deep infrared. This property can be best understood from the point of view of a dynamical
gluon mass generation [6, 7].

The aim of this presentation is to investigate the consequences associated to the static inter-
action one can derive from this picture. For this purpose we calculate numerically the one gluon
exchange (OGE) static potential deriving from the DS equations and we compare it to phenomeno-
logical potentials whose shape has been inspired by latticecomputations. The application of these
potentials to the description of quarkonia is discussed.

2. Heavy quark dynamics from lattice

For sufficiently heavy quarks, it can be shown in lattice QCD,that the bound state problem
becomes essentially nonrelativistic and the dynamics is controlled approximately by a Schrödinger
equation with a static potential. Lattice calculations, without dynamical quarks (quenched), give
rise to a static potential of the form [8, 9]

V(r) = −a/r +br. (2.1)

containing the perturbative expected Coulomb term plus an additional linear term.
The Cornell group, prior to the lattice QCD derivation, using a andb as parameters, success-

fully applied this potential to the phenomenological description of the low lying quarkonia states
[10, 11, 12, 13] and therefore this potential function is known as the Cornell potential.

Another static interquark potential shape has been guessedby performing unquenched lattice
QCD calculations. Using Kogut-Susskind fermions and adopting the lattice spacing from theρ
mass measurements a potential with the following structure,

V(r) = (−α/r + β r)

(

1−e−γr

γr

)

, (2.2)

has been shown to describe these lattice results[14]. This parameterization shows screening, as-
sociated to quarks loops, which has been cast in the form of the additional factor multiplying the
Cornell potential, leading at large values ofr to a constantβ/γ . Henceforth we shall call this shape
the Aachen potential and we shall choose its parameters to provide a reasonable fit to the spectrum.
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Figure 1: We show the two potentials described in the text : Cornell (solid) and Aachen (dashed). For the
Cornell and Aachen potentials the parameters have been chosen phenomenologically to provide a reasonable
description of the spectrum and their values are given in Sec. 4.

We show the potentials in Fig. 1 for comparison1. We use in what follows these potentials in
our discussion since they emphasize the two aspects we want to discuss, linear confinement and
screening.

3. Heavy quark dynamics from Dyson-Schwinger Equations

Infrared finite solutions for the gluon propagator of quenched QCD are obtained from the
gauge-invariant nonlinear Dyson-Schwinger equations formulated in the Feynman gauge of the
background field method. These solutions may be fitted using amassive propagator [6, 7]. Even
though the gluon is massless at the level of the fundamental QCD Lagrangian, and remains mass-
less to all order in perturbation theory, the nonperturbative QCD dynamics generates an effective,
momentum-dependent mass, without affecting the localSU(3)c invariance, which remains intact.

The gluon mass generation is a purely nonperturbative effect associated with the existence
of infrared finite solutions for the gluon propagator,∆(q2), i.e. solutions with∆−1(0) > 0. Such
solutions may be fitted by a “massive” euclidean propagator of the form [6, 16]

∆(q2) =
1

q2 +m2(q2)
, (3.1)

wherem2(q2) depends nontrivially on the momentum transferq2. One physically motivated pos-
sibility, which we shall use in here, is the so called logarithmic mass running, which is defined
by

m2(q2) = m2
0

[

ln

(

q2 + ρm2
0

Λ2

)/

ln

(

ρm2
0

Λ2

)]−1−δ

, (3.2)

1The spin-dependent corrections to the potentials above canalso be derived from lattice QCD [15]. We do not
consider them here.
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wherem0,ρ andδ are parameters whose values are chosen to fit the lattice propagator andΛ is the
QCD scale. Note that in the limitq2 → 0 one obtainsm2(0) = m2

0, giving meaning tom0.

Figure 2: One gluon exchange contribution to the potential.

Because of the presence of this dynamical gluon mass the strong effective charge extracted
from these solutions freezes at a finite value, giving rise toan infrared fixed point for QCD [6, 7].
This nonperturbative generalization ofα(q2), the QCD running coupling, comes in the form

a(q2) =

[

β0 ln

(

q2 + ρ m2(q2)

Λ2

)]−1

, (3.3)

wherea = α
4π and we takeβ0 = 11− 2nf /3 wherenf is the number of flavors. Note that its

zero gluon mass limit leads to the LO perturbative coupling constant momentum dependence. The
m(q2) in the argument of the logarithm tames the Landau pole, anda(q2) freezes at a finite value
in the IR, namelya−1(0) = β0 ln(ρ m2(0)/Λ2) .

We have constructed a simple potential model where the main source of dynamics is the One
Gluon Exchange potential (see Fig. 2) with the propagator and coupling defined by Eqs. 3.1, 3.2
and 3.3 [17]. In Fig. 3 we show the potential derived from the DS equations for the following
range of parameters:m0 ∼ 360−480 MeV,ρ = 1−4, δ = 1/11 [6, 18, 19]. The value ofΛ has
been taken to be 300 MeV. In order to adjust the behavior at theorigin to the data we have usedβ0

corresponding to 4 flavors. We have removed from this calculation the additive infinite self-energy
contribution associated with the static sources [8], a procedure we call Sommer subtraction. In lat-
tice QCD this is done normalizing the potential such thatV(r0) = 0 wherer0 is the Sommer scale
[20]. We proceed in the same way but take the subtraction point at the zero of the phenomenolog-
ical potentials, which happens to be atr0 ∼ 0.35f m (see next section). We call the result of this
construction the Dyson-Schwinger (DS) potential [17] . We obtain a potential which resembles the
Aachen and not the Cornell potential.

It should be noted that the shape of the DS potential does not vary considerably when we
change the parameters within the expected theoretical range. There is no way to reproduce the large
r behavior of the Cornell potential, instead the DS potentialflattens and becomes asymptotically
constant, similarly to the screened potentials. However, it should not! The approximations used to
find the solution to the DS equations do not contain quark loops and therefore they incorporate no
mechanism for screening, i.e. a mechanism derivable from the breaking of the string [14, 21]. The
truncation in the DS set of equations and the absence of multigluon exchanges might be responsible
for the missing linear rise at larger.
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Figure 3: We show the DS potential after the Sommer subtraction, fornf = 4 . The shaded range corresponds
to m0 ∼ 360−480MeV andρ ∼ 1−4. For comparison we plot the Cornell (dashed) and Aachen (dotted)
potentials.

4. Quarkonia description by static potentials

The Cornell potential was introduced for phenomenologicalreasons predating the complete
lattice derivation. From the spin-averaged quarkonia spectra it was evident that the underlying
potential could not be purely Coulomb type [10] . Therefore,the potential was implemented by
a sum of the perturbative expectation plus an additional linear term, recall Eq. 2.1. Aiming at
a universal treatment for charmonium (cc) and bottomonium (bb) the Cornell potential has been
used with the same values of the parameters,a and b, in both cases, for the quark masses,mc

and mb, respectively. A typical range of values providing a reasonable fit to the masses of the
low lying states (up to 1.0 GeV excitation energy) isa ∼ 0.51− 0.52 and

√
b ∼ 412− 427 MeV

[11, 12, 13]. An example of such spectral fit for charmonium isprovided in Table 1 where we
have chosen

√
b = 427 MeV anda = 0.52 with mc = 1350 MeV and compared the results with

masses of experimental resonances having well establishedJPC quantum numbers, most of them
with JPC = 1−− coming from ISR (Initial State Radiation) processes. The Cornell model provides
a good fit to the lower states (at most 30 MeV difference with data) but it cannot accommodate
all the known higher energy resonances but only some of them (we use charmonium instead of
bottomonium to clarify the effect). For instanceψ(4040), ψ(4160) andψ(4415) maybe assigned
to the 3s, 2d and 4s states respectively. Then other two resonances, catalogedin the Particle Data
Group Review [22] asX(4260) andX(4360), cannot be fitted.

The screened potentials introduced initially to fit latticedata have been used phenomenolog-
ically [23, 24]. However, the applicability of screened potentials to the spectral description has
been a matter of debate [25] since their use is not justified above the meson-meson string breaking
threshold. We assume that in the case of quarkonia there is aneffective string breaking threshold
sufficiently high in energy, to allow for a description of theknown spectrum in terms of screened
potentials. For the sake of comparison the results from the Aachen potential formc = 1400 MeV
and the same values for the corresponding Cornell parameters α = a, β = b are presented in Table
1. The value ofγ = 0.38 fm−1 is fixed to get a reasonable spectral fit. It is important to emphasize
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nrL MCornell MAachen MPDG MDS

MeV MeV MeV MeV

1s 3069 3143 3096.916±0.011 3151
2s 3688 3665 3686.09±0.04 3660
1d 3806 3775 3772.92±0.35 3761
3s 4147 4001 4039±1 4004
2d 4228 4072 4153±3 4070
4s 4539 4255 4263+8

−9 4273
3d 4601 4306 4361±9±9 4321
5s 4829 4564 4421±4 4487
4d 4879 4609 4526
6s 5218 4629 4664±11±5 4651

5d 5260 4663 4718

1p 3502 3527 3525.3±0.2 3515
2p 3983 3894 3886

Table 1: Calculated charmonium masses,MCornell, MAachen andMDS from the Cornell, Aachen and DS
potentials. For Cornell and Aachena = α = 0.52 and

√
b =

√

β = 427 MeV. The remaining parameter in
the Aachen potential has been chosen to beγ = 0.38 fm−1. For DSρ = 1 andm0 = 345.7 MeV. The charm
masses aremc = 1350 MeV for Cornell andmc = 1400 MeV for Aachen and DS. Masses for experimental
candidates,MPDG, have been taken from [22]. Forp waves we quote the centroid of thenp0, np1 andnp2

states.

that the values of the parameters of the Aachen potential extracted from lattice data [14] can only
give a reasonable description of the masses of the low lying quarkonia.

One should keep in mind that these potentials do not contain spin-dependent terms which
makes them reliable only when these terms do not play a major role. We use here the conventional
approximations, e.g. we consider that these potentials should fit better the spin triplet states and
take the centroids ofp states as data for comparison with our results.

The main difference between the Cornell and Aachen potentials refers to the description of the
higher excited states. The Aachen potential may allow a one to one assignment of the calculated
states to the data.

The similarity of the DS potential (for certain parameter sets) to the Aachen potential as shown
in Fig. 3 motivates the exercise of fitting the spectrum with the DS potential. As can bee seen in
Table 1 this can be achieved for a set of parameters which is close to the expected theoretical range.
A low value of the mass,m0 = 345.7 MeV, is necessary since only with a value close toΛ one
gets sufficient strength to achieve, after Sommer subtraction, an asymptotic behavior close to the
Aachen potential used in our spectral fit.

Let us discuss the limitations of the parameters used in the fit. The β0 expression is fixed
by QCD. β0 is the leading order coefficient of the beta function of the theory, which is scheme
independent; the small difference in value implied by the choice ofnf has almost no effect on the
results.Λ is a scale fixed by dimensional transmutation. We take 300 MeVand keep it fixed. The
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values obtained in experimental fits range from 250− 300 MeV but we have not even used that
liberty. Theδ value and the variations in the values ofρ andm0 are within the limits provided by
the DS calculations, in particularΛ < m0 < 2Λ [10,21].

5. Discussion and Conclusions

In order to interpret the above results we have to resort again to lattice calculations. In ref. [26]
the authors investigated the origin of the long range linearly rising potential. Using a mechanism
described in ref. [27] they were able to subtract the contribution of the center vortices leading to a
flat potential as shown in Fig. 4 on the left. On the right of Fig. 4 we show the DS potential after
Sommer subtraction and the linear rise of the Cornell potential. It is quite apparent that the figure
resembles the one on the left. Therefore we may tentatively conclude that the DS potential contains
the physics associated with the approximate gluon interaction but does not contain the physics of
the confinement mechanism. We do not advocate any mechanism for confinement in QCD, we
only adhere to the fact that the confinement mechanism, whatever it be, is the mechanism behind
the rising potential in the quenched approximation.
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Figure 4: The figure on the left corresponds to the calculation of ref.[26]. In the figure on the right the dotted
line corresponds to the DS potential fornf = 4 andm0 = 360 MeV andρ = 1. The dashed line corresponds
to the linear piece of the Cornell potential. The full Cornell potential is drawn (solid line) for comparison.

A surprising result of our calculation is the actual similarity of the DS potential to the Aachen
potential as shown in Fig. 3. The latter arises due to the breaking of the string and is represented by
a screened potential [14]. The similarity is astonishing more so since we have used conventional
values forρ = 1,δ = 1/11,Λ = 300 MeV and only variedm0, which becomes for the best fit
m0 = 345.7 MeV within the expected rangeΛ < m0 < 2Λ [7, 16].

Not aiming at such precision if we fit the upper extreme of the shaded region, where the
DS potential is defined bym0 = 360 MeV andρ = 1, to the Aachen potential shape function
we getα = 0.40,

√

β = 412 MeV andγ = 0.53 fm−1. The other extreme set of parameters
for the DS potential, the lower edge of the shaded region,m0 = 480 MeV andρ = 4, leads to
α = 0.37,

√

β = 361 MeV andγ = 1.81 fm−1. It is clear then, that the main difference between
the parametrizations arises due to the value of the different screening ranges, which in the Aachen
potential is controlled byγ .
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Is this similarity accidental or does string breaking implya dilution of the confinement mech-
anism associated with multigluon exchanges and/or higher order truncation schemes ? Does the
Sommer subtraction introduce the energy scale of string breaking ? More research needs to be done
in order to understand the confinement and string breaking mechanisms though our investigation
hints a possible scenario.

In conclusion, we have calculated the OGE potential associated to the approximate resolution
of the Dyson-Schwinger equations for the gluon propagator.The low r behavior is determined
perturbatively. The larger behavior is certainly nonperturbative. The Sommer procedure, to avoid
self-energy effects of the static charges, leads to a potential which is not negative at larger. The
approximate resolution of the DS equations is not able to reproduce, at the level of the OGE, the
Cornell potential. The DS equations together with the Sommer subtraction is close to the Aachen
potential that contains a string breaking mechanism. The fact that we have to push the parameters
to the limit of the allowed region to reproduce the spectrum maybe due to the fact that we have not
treated the quark mass terms appropriately.

The potential derived from the DS equations might contain most of the dynamics associated
with the interquark interaction apart from a nontrivial constant which might be related, in the
unquenched calculation, to the confinement mechanism.
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