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1. Introduction

Understanding low-energy properties of Quantum Chromanhios (QCD) represents a the-
oretical challenge. The development of nonperturbatiehrigjues are essential in this regime.
Lattice gauge theory [1, 2] constitutes a nonperturbatagularisation scheme which allows nu-
merical solutions of the theory describing properties tdriacting QCD matter [3]. The accuracy
of lattice results has been tremendously improved duriegptist decade with the availability of
more powerful computers [4, 5], and lattice results are iclemed in many instances the data which
other nonperturbative schemes should reproduce.

The approximate resolution of the Dyson-Schwinger (DS)aéiquos is another nonperturba-
tive approach which has progressed considerably in thédastears in great part due to the inter-
play between their findings and lattice results. It is a moaddical approach and has led to a very
appealing physical picture establishing that the QCD mugrgioupling (effective charge) freezes
in the deep infrared. This property can be best understaod the point of view of a dynamical
gluon mass generation [6, 7].

The aim of this presentation is to investigate the consexpgenassociated to the static inter-
action one can derive from this picture. For this purpose aleutate numerically the one gluon
exchange (OGE) static potential deriving from the DS equateind we compare it to phenomeno-
logical potentials whose shape has been inspired by lattiogputations. The application of these
potentials to the description of quarkonia is discussed.

2. Heavy quark dynamicsfrom lattice

For sufficiently heavy quarks, it can be shown in lattice Q@iat the bound state problem
becomes essentially nonrelativistic and the dynamicsnisratbed approximately by a Schrodinger
equation with a static potential. Lattice calculationstheut dynamical quarks (quenched), give
rise to a static potential of the form [8, 9]

V(r)=—a/r+br. (2.1)

containing the perturbative expected Coulomb term plusdditianal linear term.

The Cornell group, prior to the lattice QCD derivation, wsiandb as parameters, success-
fully applied this potential to the phenomenological dag@yn of the low lying quarkonia states
[10, 11, 12, 13] and therefore this potential function iswnas the Cornell potential.

Another static interquark potential shape has been gudsspdrforming unquenched lattice
QCD calculations. Using Kogut-Susskind fermions and adgpthe lattice spacing from the
mass measurements a potential with the following structure

V() = (—a/r + Br) (1_;w> , 2.2)

has been shown to describe these lattice results[14]. Enameterization shows screening, as-
sociated to quarks loops, which has been cast in the formeoddlitional factor multiplying the
Cornell potential, leading at large valuesrab a constang/y. Henceforth we shall call this shape
the Aachen potential and we shall choose its parameterstidera reasonable fit to the spectrum.
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Figure 1: We show the two potentials described in the text : Corneligsand Aachen (dashed). For the

Cornell and Aachen potentials the parameters have beeprtpbgnomenologically to provide a reasonable
description of the spectrum and their values are given in &ec

We show the potentials in Fig. 1 for compari$oiVe use in what follows these potentials in
our discussion since they emphasize the two aspects we waligduss, linear confinement and
screening.

3. Heavy quark dynamics from Dyson-Schwinger Equations

Infrared finite solutions for the gluon propagator of quaesQCD are obtained from the
gauge-invariant nonlinear Dyson-Schwinger equationmiédated in the Feynman gauge of the
background field method. These solutions may be fitted usimgssive propagator [6, 7]. Even
though the gluon is massless at the level of the fundamer@® Qagrangian, and remains mass-
less to all order in perturbation theory, the nonperturiea@CD dynamics generates an effective,
momentum-dependent mass, without affecting the IBEB). invariance, which remains intact.

The gluon mass generation is a purely nonperturbative teffezociated with the existence
of infrared finite solutions for the gluon propagata(g?), i.e. solutions withA=%(0) > 0. Such
solutions may be fitted by a “massive” euclidean propagdtthieoform [6, 16]

1

A() = Frme(@) (3.1)

wheren?(g?) depends nontrivially on the momentum trangfér One physically motivated pos-
sibility, which we shall use in here, is the so called lodariic mass running, which is defined

by

m?(g?) = m} {In (%) /In (p/\_nz‘%ﬂ _1_6, (3.2)

1The spin-dependent corrections to the potentials abovealsanbe derived from lattice QCD [15]. We do not
consider them here.
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wheremy, p andd are parameters whose values are chosen to fit the latticageatgr and\ is the
QCDscale. Note that in the limid® — 0 one obtainsr?(0) = m% giving meaning tamy.

Figure2: One gluon exchange contribution to the potential.

Because of the presence of this dynamical gluon mass thegséffective charge extracted
from these solutions freezes at a finite value, giving risartinfrared fixed point for QCD [6, 7].
This nonperturbative generalization @fg?), the QCD running coupling, comes in the form

al(cP) = [Boln (W)} B (3.3)

wherea = %T and we takefy = 11— 2n¢/3 wherens is the number of flavors. Note that its
zero gluon mass limit leads to the LO perturbative coupliogstant momentum dependence. The
m(g?) in the argument of the logarithm tames the Landau pole,aégt) freezes at a finite value
in the IR, namelya~1(0) = ByIn(pn?(0)/A?) .

We have constructed a simple potential model where the neaircs of dynamics is the One
Gluon Exchange potential (see Fig. 2) with the propagatdraaupling defined by Egs. 3.1, 3.2
and 3.3 [17]. In Fig. 3 we show the potential derived from the &juations for the following
range of parametersny ~ 360— 480 MeV,p =1—4,6 = 1/11 [6, 18, 19]. The value oA has
been taken to be 300 MeV. In order to adjust the behavior atrilgin to the data we have us@g
corresponding to 4 flavors. We have removed from this cdiiculahe additive infinite self-energy
contribution associated with the static sources [8], agudace we call Sommer subtraction. In lat-
tice QCD this is done normalizing the potential such ¥ét) = O whererg is the Sommer scale
[20]. We proceed in the same way but take the subtractiort jpoithe zero of the phenomenolog-
ical potentials, which happens to berat~ 0.35fm (see next section). We call the result of this
construction the Dyson-Schwinger (DS) potential [17] . Vil&ain a potential which resembles the
Aachen and not the Cornell potential.

It should be noted that the shape of the DS potential does argtaonsiderably when we
change the parameters within the expected theoreticatrarigere is no way to reproduce the large
r behavior of the Cornell potential, instead the DS poterilitens and becomes asymptotically
constant, similarly to the screened potentials. Howetvshauld not! The approximations used to
find the solution to the DS equations do not contain quarkdaom therefore they incorporate no
mechanism for screening, i.e. a mechanism derivable frenbtbaking of the string [14, 21]. The
truncation in the DS set of equations and the absence ofgiudti exchanges might be responsible
for the missing linear rise at large
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Figure3: We show the DS potential after the Sommer subtractiomfet 4 . The shaded range corresponds

to mp ~ 360— 480MeV andp ~ 1 — 4. For comparison we plot the Cornell (dashed) and Aachettedo
potentials.

4. Quarkonia description by static potentials

The Cornell potential was introduced for phenomenologiealsons predating the complete
lattice derivation. From the spin-averaged quarkonia tspdt was evident that the underlying
potential could not be purely Coulomb type [10] . Therefdle potential was implemented by
a sum of the perturbative expectation plus an addition&alirterm, recall Eq. 2.1. Aiming at
a universal treatment for charmoniurt) and bottomoniumip) the Cornell potential has been
used with the same values of the parametarandb, in both cases, for the quark masses,
and my, respectively. A typical range of values providing a readme fit to the masses of the
low lying states (up to 1.0 GeV excitation energylis- 0.51— 0.52 andvb ~ 412— 427 MeV
[11, 12, 13]. An example of such spectral fit for charmoniunprigvided in Table 1 where we
have chosen/b = 427 MeV anda = 0.52 with m; = 1350 MeV and compared the results with
masses of experimental resonances having well establi#ffeguantum numbers, most of them
with J°¢ = 1=~ coming from ISR (Initial State Radiation) processes. Then€lb model provides
a good fit to the lower states (at most 30 MeV difference wittaphaut it cannot accommodate
all the known higher energy resonances but only some of thvesnuée charmonium instead of
bottomonium to clarify the effect). For instangg4040), (4160 and (4415 maybe assigned
to the 3, 2d and 4 states respectively. Then other two resonances, cataloghd Particle Data
Group Review [22] a¥X (4260 andX(4360), cannot be fitted.

The screened potentials introduced initially to fit lattdtata have been used phenomenolog-
ically [23, 24]. However, the applicability of screened guuials to the spectral description has
been a matter of debate [25] since their use is not justified@the meson-meson string breaking
threshold. We assume that in the case of quarkonia thereaffestive string breaking threshold
sufficiently high in energy, to allow for a description of tkeown spectrum in terms of screened
potentials. For the sake of comparison the results from thehAn potential fom; = 1400 MeV
and the same values for the corresponding Cornell parasuetera, B = b are presented in Table
1. The value ofy = 0.38 fm ™1 is fixed to get a reasonable spectral fit. It is important to leasjze
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neL IvlCorneII I\/lAachen I\/lPDG IVIDS
MeV MeV MeV MeV
1s 3069 3143 309016+ 0.011 | 3151
2s 3688 3665 36809+ 0.04 | 3660
1d 3806 3775 3778®2+0.35 | 3761
3s 4147 4001 40321 4004
2d 4228 4072 4153 3 4070
4s 4539 4255 4263 4273
3d 4601 4306 4361£9+9 | 4321
5s 4829 4564 442% 4 4487
4d 4879 4609 4526
6s 5218 4629 4664 11+5 | 4651
5d 5260 4663 | 4718 |
1p 3502 3527 3523+0.2 | 3515
2p 3983 3894 3886

Table 1: Calculated charmonium mass@8cormell, Maachenand Mps from the Cornell, Aachen and DS
potentials. For Cornell and Aachen= a = 0.52 andvb = \/B =427 MeV. The remaining parameter in
the Aachen potential has been chosen ty be0.38 fm—1. For DSp = 1 andmy = 3457 MeV. The charm
masses are; = 1350 MeV for Cornell andn. = 1400 MeV for Aachen and DS. Masses for experimental
candidatesMppg, have been taken from [22]. Fgrwaves we quote the centroid of thep, np; andnp,
states.

that the values of the parameters of the Aachen potentiedetrt] from lattice data [14] can only
give a reasonable description of the masses of the low lyirgkepnia.

One should keep in mind that these potentials do not conf@@mdependent terms which
makes them reliable only when these terms do not play a malg@rWe use here the conventional
approximations, e.g. we consider that these potentialslgHit better the spin triplet states and
take the centroids gb states as data for comparison with our results.

The main difference between the Cornell and Aachen potemgéers to the description of the
higher excited states. The Aachen potential may allow a ormé assignment of the calculated
states to the data.

The similarity of the DS potential (for certain parametds}éo the Aachen potential as shown
in Fig. 3 motivates the exercise of fitting the spectrum wiith DS potential. As can bee seen in
Table 1 this can be achieved for a set of parameters whichsg ¢b the expected theoretical range.
A low value of the massing = 3457 MeV, is necessary since only with a value close\tone
gets sufficient strength to achieve, after Sommer subtmactin asymptotic behavior close to the
Aachen potential used in our spectral fit.

Let us discuss the limitations of the parameters used in theTfie 3y expression is fixed
by QCD. 3, is the leading order coefficient of the beta function of theotly, which is scheme
independent; the small difference in value implied by theiod of ns has almost no effect on the
results.A is a scale fixed by dimensional transmutation. We take 300 kie¥/keep it fixed. The
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values obtained in experimental fits range from 25800 MeV but we have not even used that
liberty. Thed value and the variations in the valuesmandmg are within the limits provided by
the DS calculations, in particuldy < my < 2A [10,21].

5. Discussion and Conclusions

In order to interpret the above results we have to resorhdgdattice calculations. In ref. [26]
the authors investigated the origin of the long range liyedsing potential. Using a mechanism
described in ref. [27] they were able to subtract the coutidim of the center vortices leading to a
flat potential as shown in Fig. 4 on the left. On the right of.Figve show the DS potential after
Sommer subtraction and the linear rise of the Cornell p@knit is quite apparent that the figure
resembles the one on the left. Therefore we may tentatiweiglade that the DS potential contains
the physics associated with the approximate gluon interadiut does not contain the physics of
the confinement mechanism. We do not advocate any mechaarsootifinement in QCD, we
only adhere to the fact that the confinement mechanism, wiaiebe, is the mechanism behind
the rising potential in the quenched approximation.

2 ‘ ‘ ‘ ‘ 15
—&— with vortices
0.529 - 7/(12 R) + 0.040 R

-o--+ without vortices

101

V(R)

Figure4: The figure on the left corresponds to the calculation of2é}.[ In the figure on the right the dotted
line corresponds to the DS potential far= 4 andmy = 360 MeV andpo = 1. The dashed line corresponds
to the linear piece of the Cornell potential. The full Cotipaltential is drawn (solid line) for comparison.

A surprising result of our calculation is the actual simithaof the DS potential to the Aachen
potential as shown in Fig. 3. The latter arises due to thekbrgaf the string and is represented by
a screened potential [14]. The similarity is astonishingemsn since we have used conventional
values forp = 1,6 = 1/11, A = 300 MeV and only variedry, which becomes for the best fit
mp = 3457 MeV within the expected rangk < mp < 2A [7, 16].

Not aiming at such precision if we fit the upper extreme of thaded region, where the
DS potential is defined byny = 360 MeV andp = 1, to the Aachen potential shape function
we geta = 0.40, \/B = 412 MeV andy = 0.53 fm™1. The other extreme set of parameters
for the DS potential, the lower edge of the shaded regm= 480 MeV andp = 4, leads to
a =0.37, \/E =361 MeV andy = 1.81 fm 1. It is clear then, that the main difference between
the parametrizations arises due to the value of the diffarene@ening ranges, which in the Aachen
potential is controlled by.
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Is this similarity accidental or does string breaking imaldilution of the confinement mech-
anism associated with multigluon exchanges and/or highdardruncation schemes ? Does the
Sommer subtraction introduce the energy scale of stringiimg ? More research needs to be done
in order to understand the confinement and string breakinghamésms though our investigation
hints a possible scenario.

In conclusion, we have calculated the OGE potential astmtia the approximate resolution
of the Dyson-Schwinger equations for the gluon propagaldre low r behavior is determined
perturbatively. The large behavior is certainly nonperturbative. The Sommer proado avoid
self-energy effects of the static charges, leads to a patemhich is not negative at large The
approximate resolution of the DS equations is not able toodce, at the level of the OGE, the
Cornell potential. The DS equations together with the Sonsubtraction is close to the Aachen
potential that contains a string breaking mechanism. Ttietlfat we have to push the parameters
to the limit of the allowed region to reproduce the spectruaybe due to the fact that we have not
treated the quark mass terms appropriately.

The potential derived from the DS equations might contairstnod the dynamics associated
with the interquark interaction apart from a nontrivial stant which might be related, in the
unquenched calculation, to the confinement mechanism.
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