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1. Introduction

Schwinger–Dyson equations are a powerful analytic tool to study quantum field theories be-
yond perturbation theory. In writing down the equations, no approximationsneed to be made,
which means that no physics is lost and that the equations contain, in principle, all physics — both
perturbative and non-perturbative — exactly.

In a general quantum field theory, the equations follow from Stokes’ theorem applied to the
path integral:

∫

[dφ ]
δ

δφ(x)
e−S[φ ]+J·φ = 0 . (1.1)

From this master equation, the entire tower of Schwinger–Dyson equations can be written down by
expansion in the source fieldJ(x) and equating the expansion coefficients. This leads to equations
involving full (i.e. containing disconnected parts)n-point functions, and with some further manip-
ulations they can be reduced to equations involving only connected or only 1PI Green’s functions.

In the case of Yang–Mills theory (and, by extension, of QCD) the role of the field φ(x) is
played by the gluon fieldAa

µ(x). This means that the Schwinger–Dyson equations obtained this
way will contain gluon propagators and gluon interaction vertices. But what, in the end, interests
us most are not so much gluons but rather bound-states like glueballs (and, in QCD, hadrons),
meaning that after solving the full tower of equations — supposing that we are smart enough to do
so — we would still be facing the formidable task of putting all elements together to extract the
physical quantities of interest. One can therefore wonder whether it would not be possible to write
down a set of equations involving only glueballs, thus sidestepping at leastone leg in the quest to a
better understanding of Yang–Mills theory.

This leads us to the question of the gauge symmetry. The gluon field has a non-trivial gauge
transform, which makes it rather tough to get rid of the gauge dependencewhen starting from
something like (1.1) with the field considered the gluon field. Ideally, one wouldlike to take the
functional derivative in some gauge invariant way, such that only gauge invariant quantities show
up in the resulting equations. These gauge invariant operators would thenbe interpreted as glueball
operators, and the goal mentioned above would be reached.

It seems, however, that such an ambitious program does not come easily when working in the
continuum. Work in that direction has been done in times past [1, 2, 3, 4], but it seems like the
best results come when introducing a lattice regulator. This means that manifest Lorentz invariance
will have to be sacrificed, and (hopefully) recovered when we are ableto take the continuum limit.
Furthermore, all such work done in the past (see, for example, [5, 6, 7]) focused on computing
expectation values of Wilson loops, hoping to get a better understanding ofconfinement. In my
work I aim for connected correlators, which should give more insight in the spectrum of the theory
and in scattering amplitudes.
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2. Construction of the equations

2.1 Schwinger–Dyson on the lattice

Following [8], we define the functional derivative on the lattice as

δ a
UQ(U, . . .) = lim

ε→0

Q(eiετa/2U, . . .)−Q(U, . . .)

ε
, (2.1)

whereτa are the generators of the gauge group. Analogously, a right derivative can be defined. In
practice, this operator works as

δ a
UU =

iτa

2
U , (2.2)

and furthermore it obeys Leibniz’s rule. When working on a Wilson loop containing the link matrix
U , the derivative will “cut open” the loop and introduce a group generator. We will depict this as:

δ a
x,µ

-

x ~µ

=
-s

a
x ~µ

. (2.3)

Due to the invariance of the Haar measure under gauge transformations, Stokes’ theorem applies
to the derivative thus defined:

∫

dUδ a
UQ(U, . . .) = 0 . (2.4)

In order to find a gauge invariant result from the lattice functional derivative, two derivatives
are necessary. Using a well-known identity involving the gauge group generators, one finds in
SU(N) gauge theory that

∑
a

- s
a

�s

a
x =

1
2N

-
�

x −
1
2

-
�x . (2.5)

The sum over the gauge index closes the loops that were cut open (aftereventual reconnection),
thus once more resulting in gauge invariant quantities.

All this together bring us to the strategy to follow for writing down Schwinger–Dyson equa-
tions. The master equation is:

∫

[dU]∑
a

δ a
x,µ(e

−S[U ]Q[U ]δ a
x,µR[U ]) = 0 . (2.6)

2.2 Onepoint functions

A first set of equations are the ones for the onepoint functions. As an example, let’s consider
the equation following from

∫

[dU]∑
a

δ a
x,µ(e

−S[U ]δ a
x,µP) = 0 , (2.7)
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whereP is a shorthand for the one-plaquette Wilson loop

P= 1
N tr(Ux,µUx+µ̂,νU†

x+ν̂ ,µU†
x,ν) (µ 6= ν) . (2.8)

Schematically, we find the equation

−N2−1
2N 〈P〉+ 1

2g2 −
1

2g2 〈Q〉+ 1
2g2N2

∫

dp f(p)∆PP(p) = 0 , (2.9)

whereQ is a shorthand for the sum of several Wilson loop operators involving two plaquettes,
∆PP,i(p) is the propagator or connected twopoint function of two one-plaquette Wilson loop opera-
tors in momentum space, andf (p) is some function (also depending on the relative orientation of
the two plaquettes in the propagator). This equation is equivalent to what one would find using the
loop space formalism with a lattice regulator [4].

This equation can be drawn in Feynman diagrams, which looks like

= + + . (2.10)

Here, a single line indicates the operatorP, a double line indicates the operators included inQ, and
a small dot at the end of the single line in the right-hand side is the contribution coming from the
1/2g2 term in equation (2.9). The terms in the right-hand side can be interpreted as the tree-level
contribution, a mixing term, and a one-loop correction.

Equations for vacuum expectation values of other operators thanP can be derived in a com-
pletely analogous way, with similar results.

2.3 Propagators

The equations for twopoint functions can be written down in a similar way, by simply adding
a second Wilson loop operator at some other spacetime point. One should note, however, that at
this point, it becomes of importance which of links of the first Wilson loop operator is chosen for
the functional derivative. Different choices will lead to other equations, and the quickest way to
nice first results seems to be by symmetrizing over all four links of the plaquette. Other ways are,
of course, completely valid and may or may not lead to more insight about the theory.

The result for a pair ofP operators can be depicted as1

+ + + +δ (x−y)
(

α + +
)

= 0 .

(2.11)
Here, α is a certain constant which is not important for my purposes. This is in terms offull
Green’s functions, i.e. including disconnected parts.

In order to study the connected Green’s functions, we write all full Green’s function as a
sum of the connected and the disconnected parts. Terms including disconnected parts cancel each
other upon using the Schwinger–Dyson equations for the onepoint functions. If we now define a
tree-level inverse propagator as

−1 =C+ (2.12)

1I will not write down the full mathematical expressions, as they are quite unenlightening.
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with C some constant following from the expressions, we can write down the Schwinger–Dyson
equations in terms of 1PI Green’s functions:

=

(

α + + +

)

+ + .

(2.13)

In order to get a better feeling for what is going on, let’s look at the structure of the tree-level
propagator. In the charge-conjugation even sector, it is (in momentum space) just a polynomial
of the cosines of the components of the momentum vector. In the charge-conjugation odd sector,
however, it turns out to have the denominator

∑
µ

4sin2 pµ
2 −

2g2(N2−1)
〈P〉

. (2.14)

The first term is exactly the lattice equivalent of a momentum-squared term. Thesecond term is a
mass. At tree level,〈P〉 is positive, meaning that the particle in question is tachyonic.2 This should,
however, not yet worry us as both the mass and the condensate receive important contributions
from the mixing terms.

Considering several more operators, one can take operator mixing into account, and one finds
that the denominator of the propagator gets modified. Operator with larger extent than just one
plaquette introduce higher powers of momenta, such that more zeros get generating, thus leading
to a spectrum with ever more states, and also the charge-conjugation even sector starts to contain
non-trivial physical content. I will say more about this in the next section.

2.4 Interactions

In the same vein, highern-point functions can be investigated. However, there happen several
things that are slightly out of the ordinary. For example, some of the terms found in the equation
of the threepoint vertex are:

= +δ (x−y) +δ (x−z)

+ +many others. (2.15)

Here, the red blob in the left-hand side is the term between the brackets in equation (2.13). It is a
polynomial of trigonometric functions of the momentum. The terms involving Kronecker-deltas do
not appear in standard Schwinger–Dyson equations. I will say more about this in the next section.

2As we are working on the lattice, we use Euclidean spacetime.
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3. Towards an expanded solution

3.1 Operator mixing and the strong-coupling expansion

Ignore, for now, all diagrams containing loops. It is then very tempting to treat the tree-
level term in equation (2.10) as a starting approximation and to then treat the operator mixing as
a perturbation. This turns out to give the strong-coupling expansion, i.e.an expansion in ever
increasing powers of 1/g2N or the inverse ’t Hooft coupling. The propagator is a polynomial in the
lattice momentum, and its degree increases as more powers of the inverse coupling are added. This
means an ever more extensive spectrum is found.

On the one hand this looks very interesting, as it gives us a systematic way ofcomputing
physical observables. However, the coupling under consideration has not been renormalized in any
way, and is actually the coupling defined at the cutoff — in this case the inverse lattice spacing.
This means that the continuum limit consists in taking the coupling to zero, in which case a strong-
coupling expansion is not very useful.

More research is underway in this direction.

3.2 Loops and the large-N expansion

If we could, somehow, solve the theory at zero-loop level, we would then be in a position
to compute corrections coming from loops. If we considerg2N to be a constant, then the loop
expansion turns out to be an expansion in increasing powers of 1/N2. Similar conclusions have
already been found in the context of lattice Schwinger–Dyson equations in[5, 7], and in the context
of continuum gauge invariant Schwinger–Dyson equations in [4].

When writing down this expansion, it seems that the delta terms in the threepoint function
(2.15) “eat” propagators in loops. For example, the loop diagram in equation (2.13) contains two
threepoint vertices — one bare one and one full one. When replacing thefull one by its expression
from (2.15), one of the propagators in the loop will disappear and a barefour-vertex arises. This
means that the values of the bare vertices cannot be trivially read off from the relevant equations,
as more contributions will appear when putting diagrams together.

4. Open questions left

One still open question concerns the meaning of the red blob in the equation (2.15). When
plugging the threepoint vertex into other equations, the blob has to be inverted, which leads to a
polynomial of the lattice moment appearing the denominator. This seems to mean thatthe theory
might contain more particles than the one immediately found from the full zero-loop propagator.

Another open question concerns the form of the loop expansion. As the Schwinger–Dyson
equations found in this work do not exactly have the standard form, solvingthem perturbatively
will also lead to a loop expansion which is slightly out of the ordinary. This is related to the fact that
the first leg of eachn-point function in its own equation is always singled out as special. In standard
Schwinger–Dyson equations this lack of symmetry disappears when writing down the perturbative
expansion, which seems not to happen here.

Furthermore, due to the liberty of placing the functional derivative at different links along the
main operator — as mentioned in paragraph 2.3 — there will be more equations than one gets in
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the standard Schwinger–Dyson approach. The question arises immediatelywhether and how these
extra equations can be used to get further insights.
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