PROCEEDINGS

OF SCIENCE

Schwinger—Dyson equations for manifestly gauge
invariant correlators

David Vercauteren *
Universitat de Valéncia, Spain
E-mail: Davi d. Ver caut er en@JV. es

| present a formalism in which to study the correlators of ggaunvariant operators using
Schwinger-Dyson equations. All mention of gauge depeniigldss, such as gluons and ghosts,
is avoided, leaving only manifestly gauge invariant qu#egiappearing in the equations.

International Workshop on QCD Green'’s Functions, Confingtraed Phenomenology,
September 05-09, 2011
Trento Italy

*Speaker.

(© Copyright owned by the authors under the terms of the Creativen@ns Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/



Schwinger—Dyson equations for manifestly gauge invagantelators David Vercauteren

1. Introduction

Schwinger-Dyson equations are a powerful analytic tool to study goafitld theories be-
yond perturbation theory. In writing down the equations, no approximatieesl to be made,
which means that no physics is lost and that the equations contain, in priradigibysics — both
perturbative and non-perturbative — exactly.

In a general quantum field theory, the equations follow from Stokesréme@pplied to the
path integral: 5

—Sp+J-o _
/[d(p]cwe Sel+30 g (1.1)
From this master equation, the entire tower of Schwinger-Dyson equasiarseonritten down by
expansion in the source fielldx) and equating the expansion coefficients. This leads to equations
involving full (i.e. containing disconnected partspoint functions, and with some further manip-
ulations they can be reduced to equations involving only connected or Bhigreen’s functions.

In the case of Yang—Mills theory (and, by extension, of QCD) the role effigld ¢(x) is
played by the gluon field\ﬁ (x). This means that the Schwinger—Dyson equations obtained this
way will contain gluon propagators and gluon interaction vertices. Butyithahe end, interests
us most are not so much gluons but rather bound-states like glueballsiia@€D, hadrons),
meaning that after solving the full tower of equations — supposing that &smart enough to do
so — we would still be facing the formidable task of putting all elements togethetttact the
physical quantities of interest. One can therefore wonder whether ithvimot be possible to write
down a set of equations involving only glueballs, thus sidestepping atdeadeg in the quest to a
better understanding of Yang—Mills theory.

This leads us to the question of the gauge symmetry. The gluon field hastaviagauge
transform, which makes it rather tough to get rid of the gauge dependemee starting from
something like (1.1) with the field considered the gluon field. Ideally, one wikédo take the
functional derivative in some gauge invariant way, such that only gaugariant quantities show
up in the resulting equations. These gauge invariant operators woulteheterpreted as glueball
operators, and the goal mentioned above would be reached.

It seems, however, that such an ambitious program does not come elasityworking in the
continuum. Work in that direction has been done in times past [1, 2, 3, 8]t beems like the
best results come when introducing a lattice regulator. This means that nh&oifestz invariance
will have to be sacrificed, and (hopefully) recovered when we aretaliéke the continuum limit.
Furthermore, all such work done in the past (see, for example, [9) 6odused on computing
expectation values of Wilson loops, hoping to get a better understandicgnéhement. In my
work | aim for connected correlators, which should give more insightersffectrum of the theory
and in scattering amplitudes.
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2. Construction of the equations

2.1 Schwinger—Dyson on the lattice

Following [8], we define the functional derivative on the lattice as

&Q(U,...) = lim Q(ée™2U,.. )= Q(U,..)) | (2.1)

e—0 &

wheret? are the generators of the gauge group. Analogously, a right dedwedn be defined. In
practice, this operator works as
pra
85U = %u , (2.2)
and furthermore it obeys Leibniz’s rule. When working on a Wilson loag@aing the link matrix

U, the derivative will “cut open” the loop and introduce a group generate will depict this as:

&y = 1, : (2.3)

Due to the invariance of the Haar measure under gauge transformatiokes'Sheorem applies
to the derivative thus defined:

/dUd‘j‘Q(U,...) 0. (2.4)

In order to find a gauge invariant result from the lattice functional déxie, two derivatives
are necessary. Using a well-known identity involving the gauge grouprgtars, one finds in
SU(N) gauge theory that

ZAAX _ 1 AJX 1 XL . (2.5)

The sum over the gauge index closes the loops that were cut openefataual reconnection),
thus once more resulting in gauge invariant quantities.

All this together bring us to the strategy to follow for writing down Schwingers@n equa-
tions. The master equation is:

[18u1y &2, (e SUlQusz,RU)) 0. 26)

a

2.2 Onepoint functions

A first set of equations are the ones for the onepoint functions. Asam@e, let's consider
the equation following from

/[dU] S 82, (e V5g,P) =0, 2.7)

a
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whereP is a shorthand for the one-plaquette Wilson loop

P=§tr(Ux U pnUl 5 Udy)  (H#V). (2.8)

Schematically, we find the equation

~NRHP) + 5k — 22(Q) + ke [ dPI(P)ee(p) =0, 29)

whereQ is a shorthand for the sum of several Wilson loop operators involving tagupttes,
Oppi(p) is the propagator or connected twopoint function of two one-plaquette MMit&gp opera-
tors in momentum space, arfdp) is some function (also depending on the relative orientation of
the two plaquettes in the propagator). This equation is equivalent to whatauld find using the
loop space formalism with a lattice regulator [4].

This equation can be drawn in Feynman diagrams, which looks like

-~ @®-—— +=.+O . (2.10)

Here, a single line indicates the operda®r double line indicates the operators include®jrand
a small dot at the end of the single line in the right-hand side is the contributmimgdrom the
1/2¢? term in equation (2.9). The terms in the right-hand side can be interpreted as¢Hevel
contribution, a mixing term, and a one-loop correction.

Equations for vacuum expectation values of other operatorsRi@m be derived in a com-
pletely analogous way, with similar results.

2.3 Propagators

The equations for twopoint functions can be written down in a similar wayjrbplg adding
a second Wilson loop operator at some other spacetime point. One shoulthawever, that at
this point, it becomes of importance which of links of the first Wilson loop djperia chosen for
the functional derivative. Different choices will lead to other equatiemsl the quickest way to
nice first results seems to be by symmetrizing over all four links of the plagu@ther ways are,
of course, completely valid and may or may not lead to more insight about theythe

The result for a pair oP operators can be depictedtas

—o— 00— —0— {} RIS dv)R

(2.11)
Here, a is a certain constant which is not important for my purposes. This is in termglof
Green’s functions, i.e. including disconnected parts.
In order to study the connected Green’s functions, we write all full @sefinction as a
sum of the connected and the disconnected parts. Terms including distedparts cancel each
other upon using the Schwinger-Dyson equations for the onepoinidaac If we now define a

tree-level inverse propagator as
—1:c+i (2.12)

11 will not write down the full mathematical expressions, as they are quialightening.
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with C some constant following from the expressions, we can write down the iSgbmw-Dyson
equations in terms of 1Pl Green'’s functions:

o— - <a+$+@&/.>+—=.— +{>&-

(2.13)
In order to get a better feeling for what is going on, let’s look at the straatfithe tree-level
propagator. In the charge-conjugation even sector, it is (in momentuoe)spst a polynomial
of the cosines of the components of the momentum vector. In the chargezaton odd sector,
however, it turns out to have the denominator

ope 20A(N2—1)
%4smzp7— R

The first term is exactly the lattice equivalent of a momentum-squared ternsetioad term is a
mass. At tree level,P) is positive, meaning that the particle in question is tachyéribis should,
however, not yet worry us as both the mass and the condensateer@ogirtant contributions
from the mixing terms.

Considering several more operators, one can take operator mixing caardgcand one finds
that the denominator of the propagator gets modified. Operator with lar¢ggmtekan just one
plaguette introduce higher powers of momenta, such that more zerosngeatjeg, thus leading
to a spectrum with ever more states, and also the charge-conjugationestensiarts to contain
non-trivial physical content. | will say more about this in the next section.

(2.14)

2.4 Interactions

In the same vein, higherpoint functions can be investigated. However, there happen several
things that are slightly out of the ordinary. For example, some of the ternmslfiouthe equation
of the threepoint vertex are:

’(:: { +5(Xy)\®.. +6(x2>£,’

+ + many others (2.15)

Here, the red blob in the left-hand side is the term between the bracketsdticq(R.13). Itis a
polynomial of trigonometric functions of the momentum. The terms involving Krkaedeltas do
not appear in standard Schwinger—Dyson equations. | will say morg #tis in the next section.

2As we are working on the lattice, we use Euclidean spacetime.
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3. Towards an expanded solution

3.1 Operator mixing and the strong-coupling expansion

Ignore, for now, all diagrams containing loops. It is then very tempting tat tilee tree-
level term in equation (2.10) as a starting approximation and to then treat ¢hatopmixing as
a perturbation. This turns out to give the strong-coupling expansionaneexpansion in ever
increasing powers of /2N or the inverse 't Hooft coupling. The propagator is a polynomial in the
lattice momentum, and its degree increases as more powers of the inverbegargadded. This
means an ever more extensive spectrum is found.

On the one hand this looks very interesting, as it gives us a systematic waymyfuting
physical observables. However, the coupling under consideratgondidbeen renormalized in any
way, and is actually the coupling defined at the cutoff — in this case the enattice spacing.
This means that the continuum limit consists in taking the coupling to zero, in wagshastrong-
coupling expansion is not very useful.

More research is underway in this direction.

3.2 Loops and the largeN expansion

If we could, somehow, solve the theory at zero-loop level, we would tleem ka position
to compute corrections coming from loops. If we consigéX to be a constant, then the loop
expansion turns out to be an expansion in increasing powergNt. 1Similar conclusions have
already been found in the context of lattice Schwinger—Dyson equati¢hsih and in the context
of continuum gauge invariant Schwinger—Dyson equations in [4].

When writing down this expansion, it seems that the delta terms in the threepoiiioin
(2.15) “eat” propagators in loops. For example, the loop diagram in equgi®3) contains two
threepoint vertices — one bare one and one full one. When replacirigltib@e by its expression
from (2.15), one of the propagators in the loop will disappear and afbarevertex arises. This
means that the values of the bare vertices cannot be trivially read offtfre relevant equations,
as more contributions will appear when putting diagrams together.

4. Open questions left

One still open question concerns the meaning of the red blob in the equatl&). (2Vhen
plugging the threepoint vertex into other equations, the blob has to be idyvertéch leads to a
polynomial of the lattice moment appearing the denominator. This seems to me#metkizdory
might contain more particles than the one immediately found from the full zegdompagator.

Another open question concerns the form of the loop expansion. Asciinisger—Dyson
equations found in this work do not exactly have the standard form, solligrg perturbatively
will also lead to a loop expansion which is slightly out of the ordinary. Thisléee to the fact that
the first leg of each-point function in its own equation is always singled out as special. In atdnd
Schwinger—Dyson equations this lack of symmetry disappears when wriimg the perturbative
expansion, which seems not to happen here.

Furthermore, due to the liberty of placing the functional derivative agugfit links along the
main operator — as mentioned in paragraph 2.3 — there will be more equationsrtegets in
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the standard Schwinger—Dyson approach. The question arises immediagther and how these
extra equations can be used to get further insights.
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