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1. Introduction

The Dyson-Schwinger equations of Coulomb gauge quantuenatatynamics (QCD) rep-
resent one of the many technigues being currently explareda hope of one day being able to
describe confinement and the hadron spectrum from firstiptésc As with most difficult prob-
lems, it is useful to be able to compare and contrast diffeapproaches to gain further insight.
One aim of this talk is to compare a leading order truncatibthe Dyson-Schwinger equations
[1] to the gap equations for the static gluon and quark prafmg obtained within a quasi-particle
approximation to the canonical Hamiltonian approach [2]3,

The talk starts with a brief review of Coulomb gauge withia finst order formalism, including
a discussion of the charge constraint that emerges froomtimeripleteness of the gauge fixing. To
avoid problems stemming from the nonlocality of this forisial, an Ansatz is introduced such that
the Dyson-Schwinger equations can be derived. The reduofithe truncated Dyson-Schwinger
equations to the gap equations for the static propagatdrthariink to heavy quarks will be shown.
How the heavy quark limit provides an intuitive explanatfonthe charge constraint and infrared
divergences as being unobservable constant shifts in tieated will be discussed.

2. Coulomb gauge in the first order formalism

Let us begin by considering the functional integral asgediavith QCD (in Minkowski space):

‘ - = 1—» — 1—» —
Z :/.@cpe%w, FocD = /dx{qax [|;PD0X+|y-DX—m s qu+§E;'§‘-E;'§‘— 553-53} (2.1)

where 2® generically represents the functional integration measwer all fields present. The
(conjugate) quark field i) gy where the fundamental color, spin and flavor indices are téeino
collectively with the index3 and the position argument with subscipfThe Diracy-matrices obey
the usual Clifford algebrdy*, ¥} = 2g*V with metricg"¥ = diag(1, —1) (we explicitly extract all
the minus signs associated with the metric such that all oomepts of a spatial vect@rare written
with subscripts, i.e.x). The temporal and spatial components of the covarianvatdre in the
fundamental color representation are given by

DOX - aOX - |gO-XaTa, rjx - _ljx+ |glz\§Ta (22)

wherea? (= A%) and,&';‘ are the temporal and spatial components of the gluon fiesgetively,
and where the superscriptdenotes the color index in the adjoint representation. Trmegators
obey [T2 TP] = 1f3PT¢, where thef3 are the structure constants and we use the normalization
Tr[T2TP) = 52°/2. The chromoelectric and chromomagnetic fields are writtégrms of the gluon
field as

=a ra__Rab-b Ba_ & Aa 1 abcgb . AC

BS = —00A D30y, BY=Dix AR— SgfT A AS (2.3)
with the spatial component of the covariant derivative i dldjoint representation given by

D20 = 50, — g FAPAL. (2.4)

The QCD action is invariant under gauge transfons A° =UAUT—1/g(0U)UT, q—¢° =
Ug, whereUy = exp{—102T?} is a spacetime element of ti8J(N;) group parametrized b§g.
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Because of this invariance, the functional integral corgta divergence due to the integration over
the gauge group. When calculating Green’s functions sugit@sagators, it is thus necessary to
fix the gauge and our choice is Coulomb gau@e;&: 0. The Faddeev-Popov (FP) technique to
fix the gauge involves inserting the identity

5F2|af, A¢|

1= / 265 <F [09,,&9]) Det[Mab(x,y)] L MP(cy) = — @ (2.5)

F=0

into the functional integral. However, in Coulomb gauge vetfe = [J- A and the FP kernel reads
M(X,y) ~ — DOy Dxd(x—y), there is an obvious problem when the gauge transform paeaf
is spatially independent:

~k-B5P6°(x0) = 0 (2.6)

(there are no temporal derivatives) such that the FP detamhautomatically vanishes. Coulomb
gauge is incomplete in this respect. The resolution of thgptwal zero modes of the FP operator
leads to a constraint on the total color charge of the systethe first order formalism [5]. The
identity, Eq. (2.5), is modified to

1= / 785 (F [09,5\9} ) D—et[Mab(x, y)} 2.7)

where 26 andDet explicitly exclude the temporal zero modé$x). The Coulomb gauge fixed
functional integral is thus

z— / 9@6 (11.A) Det[-{1.5] ¢ece. 2.8)

The conversion to the first order formalism goes as follow¥ [6&]. An auxiliary vector field %)
is introduced via

exp{lfdx:—ZLE)?Ef} :/.@nexp{l/dx[—%ﬁf-ﬁf—ﬁf-ﬁf}} (2.9)
and split up into componentg s the longitudinal part off) with
const= /.@q}@rexp{—l/dxrf1 <ix-ﬁ;‘;‘+ iﬁ@?)} (2.10)

Changing variable& — 77— [l and integrating out the Lagrange multiplier, the functidntegral
now has the form
z— /9@5 (B-A) & (01-7) Det[-5.5] ¢, 2.11)

where the actiony”, is at most linear in the temporal gauge fiedd,the corresponding term is
S = / dxo3 (DB + g P22 T + Gl V' T aplpx ) - (2.12)

(Incidentally, the above form of the functional integrathie starting point for studying perturbation
theory in the first order formalism [7, 8, 9].) Importantliieto-field can be integrated out to give

z— / 705 (5.A) 5 (B-71) Det[ -0 & (0B -+ p) e (2.13)



Leading order QCD in Coulomb gauge Peter Watson

where the color charge, includes both gluonic and quark contributions:

ﬁ)? = gfabcﬁ‘g'W‘Fgqax[VOTa]aBQBx- (2-14)

The @ field can be integrated out by using the eigenfunctions ofdmddeev-Popov operator as a
complete orthonormal basis for an expansion, the cruciat foing that one must remember the
temporal zero modes [5]. Including tigedependent part of the action, the explicit expression is

/@(pé D Do+p exp{ /dxq;?DXq;(} (/d?ﬁ) D—et[—i-ﬁ}_ exp{——/dxpaFabpx}
(2.15)

where . .

R [-OeBy| (-02) [-DeBs] (2.16)
Notice the appearance of thiwerse(modified) FP determinant, that will cancel against theingh
in the functional integral. Thé-functional constraint that emerges constrains the talarcharge,
the spatial integral arising from the projection onto th@peral zero mode. In order to study its
effect, we rewrite thi®-functional constraint in Gaussian form [1]:

5 ( /dm) ~ lim ¥ (€) exp{—; [ axayp09¢ 550 —yo)f?b(y)} (2.17)

where% is a constant,# (¢) is a normalization factor to be included implicitly in thenfttional
integral measure, and the lindt — oo will be taken only at the end of any calculation. With this,
our functional integral now reads

z— /9@5 (iﬂ) 5(B7)e”, (2.18)

with the action

1. A L . R
lEE- nxa.ns+nxa.aoXAg}

—% / dxdypED(x, ) A2 (2.19)

y:/dx{qax |:IV)60X+IV'5X_ ] Upx —

and where- is the Coulomb kernel, but shifted by a spatial constant qutignal to%”:
Fo(x,y) = F°3(x— ) + €68 (x0 — Yo)- (2.20)

There exists a useful connection between the Coulomb kartethe temporal gluon propagator
[10]. Redoing the analysis for the functional integral ia iresence of a source)(for the temporal
gluon field, the temporal gluon propagator is defined as

1 &Zlp]

ab _
WUU(Xay) - Z[p] 5|p 5|py

(2.21)

The presence of the sourgeonly alters the above action, Eq. (2.19), by replagihwith p =
o+ p. As noted [10], the temporal gluon propagator has a pureltaitaneous part given by the
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expectation value of the Coulomb kernel since it involvely apatial derivatives. In our case,
where the kernel is shifted by a constant, we see that

W2 (x,y) ~<IF2S(X—¥) +14°3%°> 3(%o — Yo) + Non-inst. (2.22)

To recap, by writing the Coulomb gauge functional integnahie first order formalism, the FP
determinant cancels after integrating out the temporal@mgitudinal fields and Coulomb gauge is
thus ghost-free [6, 7]. What remains of the gluon field areitietransverse vector componeris
and7t (which would give rise to the two polarization states of mimstin quantum electrodynamics).
Treating the temporal zero modes of the FP operator eXplitits further seen that the total color
charge must be conserved and vanishing [5]. This is nothiagerthan the application of Gauss’
law. Writing the total charge constraint in Gaussian fotme, Coulomb kernel is shifted by a spatial
constant — eventually however, we must take the limit whisie donstant diverges. We shall see
though that this is not a problem in the end.

3. Truncated Dyson-Schwinger equations

Having written down our functional integral in the first ordermalism, we would like to use
it. Unfortunately, the Coulomb kernel terri)is nonlocal because of the presence of the inverse
FP operator. In order to derive Dyson-Schwinger equatiegherefore make a truncation Ansatz
whereby we replace the Coulomb kernel with its expectatadner[1]:

F2(x,y) — [F(X— ) + %] 5%°5 (%0 — Yo) (3.1)

whereF is now some purely spatial, scalar function which will seagenonperturbative input into
the system. Note that this Ansatz still includes the treelleerm, such that one-loop perturbative
results could still be obtained at this stage. The actiomwis local, and given the form of the color
chargep, Eq. (2.14), the Coulomb interaction tefpf p now involves a set of effective four-point
vertices (see below for their explicit form). In effect, bgrwerting to the first order formalism,
we replace the dynamics of the nonperturbative towers ofoDy&chwinger equations [7] and
Slavnov-Taylor identities [11] involving the temporaf); longitudinal ) and ghost degrees of
freedom with our leading order Ansatz fer

Since we have only modified the Coulomb interaction part efdbtion, many of the propa-
gator and vertex Green'’s functions in the present formatiambe read off from previous studies
[7, 9]. In particular, the propagatorg/(in our notation) in momentum space are given by:

W k) = 130 g

Ag(K)
- [ an(k
WEE (k) = —8%%kot;j (K) AAg((k))’
Wi (k) = 18%°K?t;; (K) Zﬁﬁ? :
Wagap (6) = — 5y [VK0A ) — PRA(K) + Bk + VPhop-Rau(l]
Dg(K) = KT An(K) — KT aa(K)T () 4104,
A1 (K) = KA (K) — KPAZ(K) — BA(K) + KGK*AG (K) + 10, (32)
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where the various dressing functions arise from the decsitipos of the proper two-point func-
tions ():

Fs; (€)= 18%° 8P rn() + 1y (R e(K) |

31 (<) = 8% [ 8P + 1 (T a(K) | = T (—K),

itk () = 182K [t (KM aa(k) + iy (KT aa(l)|

o () = 1 [VPho (k) — F-RA(K) — Bra(k) + yPloVKAs(K)| . (3.3)

ap

In the abovel;; andt;; are the usual longitudinal and transverse spatial prajgctespectively. The
components of the gluon propagator are spatially traneumsause we are in Coulomb gauge. The
dressing functions are all scalar functionekg)f;mdl?2 separately, due to the noncovariance. Attree-
levell ;e =T ar=Taa= A = As= 1, B, = mand all others vanish. Notice the matrix inversion
structure of the components of the gluonic and quark prapagawvith the denominator factofg,
andAs — these will turn out to be important. The tree-level qualtkeg (Mqqa), three- (aaa) and
four-gluon (" aaan) vertices are also unaltered from [7, 9], although theidiekgform will not be
needed here. With our Ansatz to replace the Coulomb kerrthlitgi expectation value, the new
tree-level vertices explicitly read [1] (all momenta incioiy)

iames (ks e Ko, ka) = —1g2 [ £621 1006 G (ka-+ k) + 109112035 GE (b k)|
0)ab o~
i (K1, Ko, ks, ka) = 162 FPPT 1] 6 Fe (),

r%qaﬁyé(kl’ ko, ka, Ka) = —16° [y"T o [VOTb] yalfab(lirkz) 17 [T 45 [V)Tb] yﬁlfba(k1+k4)-
(3.4)

With a little practice, the Dyson-Schwinger equations aredifficult to derive (although keep-
ing track of the signs when quarks are present is somewhiaid Generically, their structure
arises from the Legendre transform and repeated functiifiatentiation of the generating func-
tional, giving the characteristic sequence of loop integr8uch a derivation in Coulomb gauge is
given in Refs. [7, 12, 9]. Omitting the two-loop contributg the Dyson-Schwinger equations for
the proper two-point functions, in the system considerae [, are presented diagrammatically
in Figs. 1 and 2. Because of the existence of the mixed gluopggatoM\a,;, certain loops
involve a sum over the two gluonic field typ@s 7t which is denoted by andC in the diagrams.
In addition to the truncation to omit two-loop contributgrwe further restrict to considering only
those terms arising from the tree-level four-point verigevolving the Coulomb kerndf, i.e.,
we throw away thd gga, [aaa andl aaaa tree-level vertices. The remaining loops of the Dyson-
Schwinger equations are thus tadpole contributions ifwglthe propagators and our input Ansatz
for F, forming a closed set of equations. The input we have in nimdativated by the connection
to the instantaneous part of the temporal gluon propagaianomentum space and omitting the
perturbative contributions, we will assume the strongfyared enhanced form:

9’CeF3P(k) = 6%°F (K2) + 6%¢ (2m)®5(k), F(K?) = 8mo./K* (3.5)

whereCr = (N2 —1)/2N. andoy is the Coulomb string tension [13]. Note tlg&F is a renormal-
ization group invariant quantity in Coulomb gauge [6, 1@,is ideal for use as input. We shall
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Figure 1: Dyson-Schwinger equations fBky;, I za andl™ aa, Omitting two-loop terms. Wavy lines denote
proper functions, the large filled blob indicating the degsfunction. Springs denote gluonic propagators,
lines denote the quark propagator and all internal propagaire dressed. Small blobs indicate tree-level
vertices and large circles denote dressed vertices. Thaiglield typesB andC denote the sum ovérand

7T contributions arising due to the presence of mixed gluopagators. See text for details.

show that this truncation results in gap equations for tagcsgjluon and quark propagator dressing
functions that can be compared to those derived in the cealoHiamiltonian approach, Refs. [2]
and [4], respectively.

4. Leading order static gluon equation

Let us consider the truncated Dyson-Schwinger equatiomhiBamixed gluonic proper two-
point function,l” ;a (middle line of Fig. 1). Recognizing that the color struetarf the quark tadpole
loop vanishes, the equation can be writt@it = d*w/(2m)*%)

dwwol an(w)
koAg(w)
where we have expanded the two-point functions using E¢®.33) and the four-point function,
Eq. (3.4), subsequently resolving the color structurec&nis energy independent (coming from
the instantaneous Coulomb kernel) and all dressing fumetare even functions of energy, the
energy integral of the above is overall odd and vanishess iftinediately gives the results

il an(K) +1ij (KT an(k) = &; —16°Ne tij ()F (k— w) (4.1)

Far=1, Tar=0, Ag(k) =G —KTaa(K)T (k) +10;.. (4.2)
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N}
=

Figure 2: Dyson-Schwinger equation for the quark two-point functimmitting two-loop terms. On the left-
hand side, the filled blob indicates the dressed (inversg)auator, otherwise notation is as in the previous
figure. See text for details.

Turning to the truncated Dyson-Schwinger equationg fgrandl aa (first and last lines of Fig. 1,
respectively), after sorting out the decompositions ardrdactors as above, we have (the longi-
tudinal dressing functions;;; andl aa play no role here)

Fm(k):1+%gch ‘%F(k w)t;i (Kt (@),
. 2
Fan(k) = 14 36N | a"%‘;’A—r(’;j)(‘*’)ﬁk—w)tn(R)tu@). (4.3)
g

The energy integrals do not involkg because of the energy independencé a@ind we thus see
that I ;; and T aa are energy independent. The energy dependence of the deatomfactorAg

is now reduced such that we can now define the static (i.erggmetegrated or equaltime) gluon
propagator in terms of a single dressing functi@r1]:

dko

SOWgR, (K) = 8% (R) = G2, G = /T an (4.4)

2|k|

A similar expression exists for the staltispropagatorw,sf%. Further inserting the Ansatz form for
F from Eq. (3.5) and writing the spatial integrals in terms3fthe equations become

b
WRR(K) =

- Ne € _ - N, o) . .
FoK?) = 14 — ——G(K)Y? 4+ = [ —=G(6P)Y?F (k— @)tii (K)ti; (&),
rm(K%) ZCF\/R’z() ﬁ( )R ( )i (K)tij (@)

- Ne & N Cdw @ -
Faa(kK?) = 1+ — ——G(K3) V2 4+ = = G(@*) Y2F (k— @)tji (K)t 4.5
Aa(k%) 2 iz (k%)™ NGA (@) 2R ( )i (Kt (69) (4.5)

whered® = dé@/(2m)3. The proper dressing functiofis,; andl aa have contributions linear in
% (the constant that arises from the charge conservationakadfrom the potentially infrared
divergent spatial integrals ovér ~ 1/(?— @)%, if we use Eq. (3.5) as input. However, further
utilizing the definition ofG, Eqg. (4.4), we find that we can combine the above coupled mumsat
into a single equation for the static gluon propagator dgngsginction:

1IN, f T

G(K) =1+=

. )1/2_6[)2 G(Rz)
acr | Vaz

F(k— )i (Kt (@) 7 Gla?)2

G(&* (4.6)
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This is the gluon gap equation and is identical to that oalijrderived from the canonical approach
[2]. The troublesome terms proportional #@drop out and the infrared divergence of the spatial
integrals is canceled (this is explicitly verified in [1]}.thus appears that under this (leading order)
truncation, the static gluon propagator contains the ghyslynamics of the system whereas the
full propagator (in particular, its pole position) is ungigal. We shall discuss this at the end of
the next section. It is known that for an interaction of thpetygiven by Eqg. (3.5), the solution
to Eqg. (4.6) is of the massive type [1, 2], in contradictionthe expected Gribov type solution
[14]. However, from the canonical approach, it is known thatgap equation receives significant
infrared contributions from the ghost loop (‘curvatured] fvhich is missing from the leading order
truncation presented here.

5. Leading order quarks and the heavy limit

The analysis for the quark Dyson-Schwinger equation is génijlar to that previously de-
scribed for the gluon. This similarity arises because tHercchargep, Eq. (2.14), treats the
gluonic and quark contributions on an equal footing. Trdingathe equation (Fig. 2), inserting
the appropriate factors, Egs. (3.2,3.3,3.4), resolvimgcihior factors and projecting out the Dirac
components, we obtain four coupled equations (one for ehttearessing functions). Two are
trivial because they involve odd energy integrals:

At(k) :1_|92CF‘/ d—wab ( ) ( )7

koAt (w)
P /waok af(/szf()F;( W) 5.1)
such that
A=1 Ad=0, Ar(K) =ks—K*AZ(K) —BZ(K) +10;. (52)
The other two equations are
A = 1+|92CF/ Fwk- (I:(/;z( ()F;(k—w)7
Bin(K) — m+|92CF/ 0 Bim( ()F)( w) (5.3)

where the energy independenceFofigain means thats and By, are purely spatial. As for the
gluon, we can now write the static quark propagator in terfrisgingle dressing functiom:

—

dko [V-k— M (kz)} ap " (I(’Z) _ Bm(R’Z) | (5.4)

(R) V\ﬁqorﬁ -
qqaB 21 2 /R»z M (Rz)z As(k?)
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Inserting the form of given by Eq. (3.5), these equations become

- 1 dak-oF (k— @)
A(R) = 1+ 2 5[ = .
2\/k2+M K2)2 T2l ey@ M@y
- AVICS) dOM(@D?)F (k— %)
Bm(K2) = m+ =) / o (5.5)

Like for the gluon, the dressing functions for the quark ggtor are also linear i and in-
volve potentially infrared divergent spatial integralsovver, the coupled equations can also be
combined into a single gap equation fdr

/ daF k- @) [M(aﬁ) KOm@) (5.6)

V@2 +M(?)?
where theZ-dependence and the potential infrared divergence cafalsts verified explicitly in
Ref. [1]). This equation is very well-known as the Adler-Ixatruncation [4] and was originally
derived using the canonical approach. With the interactin (3.5), the solution does exhibit dy-
namical chiral symmetry breaking [1, 4], but to a quantili too small degree for phenomenol-
ogy - this leading order truncation requires further ctitiions [15].

It is possible to make the connection between the truncateckgpropagator and the known
Coulomb gauge heavy quark limit [16] (see also Carina Pas\dontribution to these proceed-
ings). This is done via a spin-decomposition of the full yamopagator [17]. Introducing the spin
projectors

P.=(1+y%)/2, P, +P.=1 (5.7)

the full quark propagator can be written as
Waap (K) = [(Py + P-)Waq(K) (Py +P-)] 45 - (5.8)

We now consider the heavy quark limit in the Coulomb gaug¢ frasne: |R|/m — 0. Using
Eq. (5.6), we can make an estimate for the static dressirgifunmiV (this is confirmed numerically

in [1]). The functionF (E— ) peaks atd = k but the bracketed combination of functions vanishes,
canceling the infrared divergence and leaving

M(K3)  [K<m

M (K?) ~ m+ # SUmt# (5.9)
k2 +M2(k2)

so that from Eq. (5.5), the functios andB,,, are given by

NI ﬁ(l/m)
B (k?) 5™ m+§<€+§ / TOF (&%) = By (5.10)

where forB, it is recognized that the infrared divergence of the inteignaot suppressed by factors
of 1/m, and forAs we demand thanis the largest scale (the linfif — o is taken only at the end).

10
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The spin-decomposed quark propagator is then

Wagas (K) [Kl<m [kg_(B_%{[ko+Bh]P+P+—[ko—Bh]PP}aB
[P+P+]GB [P—P—]aﬁ

= _I[ko—Bh+|£]+l[ko+Bh—|£]' (5.11)
The first component represents a heavy quark propagatimgfdrin time (the second is the anti-
quark propagating backwards in time) and explicitly agmeiis the expression found in Ref. [16].
Further, when considering the heavy quark limit of the Be3ladpeter equation, the Faddeev equa-
tion or the quark four-point function, the consta&fitand infrared divergent spatial integral occur-
ring in By, cancel explicitly when the quarks are in a color singlet @pmfation (and only for these
configurations). The Bethe-Salpeter equation moreoveidhes the result that

V(r) N/U@F(G)z)(l—e'a"?) (5.12)

(r is a length scale) so that the connection between the Couterniel,F, and the quark-antiquark
potential,V, is made explicit.

The connection to the heavy quark limit is rather importhet;ause it explains the role of the
constant?# (arising from the charge constraint) and the infrared djgaces. Within the leading
order truncation presented here, the physical dynamicsar@ined within the static propagator
dressing functions and their gap equations. The full prafzag have pole positions that are de-
pendent or¥’ and the infrared divergence. As the pole positions areeghtft infinity in the limit
% — o (i.e., when the total color charge is conserved and vargdtand as the infrared integrals
diverge, this simply reflects the fact that infinite energyeiquired to create isolated colored par-
ticles from the colorless vacuum. However, for physicabcainglets the divergent contributions
cancel. It thus appears that the constéardand the infrared divergence are merely constant shifts in
the potential and which are not observable.

6. Summary

In summary, a leading order truncation to the Dyson-Scheiimgjuations of Coulomb gauge
within the first order formalism has been presented. Bec@asdomb gauge is incomplete, the
temporal zero modes must be taken into account and it is baethis results in a nonperturbative
constraint on the total color charge. In the Coulomb gaugedider formalism, the ghosts cancel
but the resulting action is nonlocal. To derive the Dysohvnger equations, an Ansatz is thus
made to replace the nonlocal Coulomb kernel with its expiectaralue. This introduces a set of
four-point interaction vertices, which are dependent anittput Ansatz for the Coulomb kernel
(F). Truncating the system to include only the tadpole diagramolving this input Ansatz leads
to a closed set of equations (their solution is discussedeiin [R]). Importantly, these equations
reduce to the gap equations for the static gluon and quapagaiors obtained from a quasi-particle
approximation in the canonical Hamiltonian approach, R&lsand [4], respectively. Furthermore,
the known Coulomb gauge heavy quark limit [16] emerges. demn that the static propagator gap
equations are not affected by the charge constraint or fherdéa divergence of the input Ansatz,

11
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F. This is in contrast to the full propagators, which are dejeet. However, the connection
to the heavy quark limit supplies an explanation: such usjgay singularities cancel for color
singlet states, whereas the pole positions of colored padpes are shifted to infinity, reflecting
that infinite energy is required for these to be created ilaigm from the vacuum.
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