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A consistent subtraction procedure of the infinities in the massive Yang-Mills theory (a nonrenor-
malizable model), recently proposed, appears to be doable only via dimensional regularization
and moreover to face problems with unitarity (a remnant of nonrenormalizability).
Here we show how the lattice regularization turns out to be a promising tool for shedding some
light on both problems. We consider a lattice model for the massive YM theory with a Wilsonian
action plus a term, which yields the Stückelberg mass invariant in the naïve continuum limit.
After a birds-eyed view of the parameters space (coupling constant and mass) we study the prop-
erty of the phases. Suitable gauge invariant fields are introduced and their correlators are calcu-
lated. Some informations can be obtained from the energy gaps.

The results of this investigation are positive both for the lattice regularization of the massive YM

akin to the dimensional subtraction and for the question of unitarity.
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Massive Yang-Mills: Divergences Removal, Unitarity and Lattice Simulation

1. Introduction

A common structure is present in the nonlinear sigma model (NLSM), in the massive Yang-Mills
(YM) and in the Higgless Electro-Weak model (EW). ForSU(2) one has the action structures:
NLSM [1]

SNLSM= ΛD−4M2

4

∫

dDx Tr
{

∂ µΩ†∂µΩ
}

(1.1)

the Stückelberg mass for YM [2]

SYM ∼ ΛD−4M2
∫

dDx Tr

{

[

Aµ − iΩ∂µΩ†
]2
}

(1.2)

and EW mass terms [3],[4]

SEW ∼ ΛD−4M2
∫

dDx

(

Tr

{

(

gAµ −
g′

2
Ωτ3BµΩ†− iΩ∂µΩ†)2

}

+
κ
2

[

Tr
{

(

gAµ −
g′

2
Ωτ3BµΩ†− iΩ∂µΩ†

)

τ3
}

]2
)

. (1.3)

The 2×2∈ SU(2) matrix may be parameterized by the real fields

Ω = φ0+ iτiφi , φ0 =

√

1−~φ2. (1.4)

The constraint is implemented in the path integral measure

∏
x

D
4φ(x)θ(φ0)δ (~φ (x)2+φ2

0(x)−1) = ∏
x

D
3φ(x)

2
√

1−~φ2
. (1.5)

The non trivial measure in the path integral is the source of very interesting facts. This has led
us [1]-[4] to propose a subtraction procedure which preserves locality and perturbative unitarity
for nonrenormalizable theories as nonlinear sigma model, massive Yang-Mills and the electroweak
model with no Higgs boson.

2. Subtraction and Unitarity

The theory is expected to be fundamental (not an effective one), where the number of parameters
is fixed. Two questions are discussed here.

A) The suggested subtraction procedure is based ondimensional regularization. The question is
whether it works with other regularizations.

B) Although perturbativeunitarity is valid, the behavior of some cross sections at high energy,
evaluated at fixed order, is untenable (e.g. the celebrated case ofWLWL elastic scattering [5]).
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3. Decoupling of the Longitudinal Modes

In a recent work [6] we showed that this problem (Unitarity) is tightly connected to the cou-
pling/decoupling of the longitudinal mode at very high energy. Roughly speaking, by means of
the Equivalence Theorem [7] one can show that in the Higgs mechanism the longitudinal mode
does not decouple, while in the nonlinear case a phase transition separates the low energy regime
from the high energy’s where the longitudinal mode decouples.

In the present work we investigate these problems in latticegauge theory. Our preliminary
results support this scenario.

4. The Lattice Action (SU(2)Yang-Mills)

We use a naïve continuous limit to write the lattice (L4) action (D = 4 cubic lattice with periodic
boundary conditions): the Wilson plaquette action [8] witha mass term.

SE =−β
2
Re∑

�

Tr(U�)

−β
2

M2a2
Re∑

xµ
Tr
{

Ω(x)†U(x,µ)Ω(x+µ)
}

, (4.1)

whereβ = 4
g2 . We use the dimensionless parameterm2 ≡ M2a2.

The limit for the classical action yields

− lim
a=0

β
2

M2a2
Re∑

xµ
Tr
{

Ω(x)†U(x,µ)Ω(x+µ)−1
}

=
M2

g2

∫

d4xTr
{

(Aµ − iΩ∂µΩ†)2
}

=
M2

g2

∫

d4xTr
{

[(i∂µ +Aµ)Ω]†(i∂µ +Aµ)Ω
}

. (4.2)

5. Simulation (Heat Bath)

The partition function is obtained by summing over all configurations given by the link variables
U(x,µ) and the gauge fieldΩ(x) both∈ SU(2)

Z[β ,m2,N] = ∑
{U,Ω}

e−SE , (5.1)

whereN is the number of sites.
This model has been studied for a long time [9] to describe theHiggs field with frozen length.

In our approach the integration overΩ(x) is redundant, since by a change of variables (U ′(x) :=
Ω(x)†U(x,µ)Ω(x+µ)) we can factor out the volume of the group

Z =
[

∑
{Ω}

]

∑
{U}

e
β
(

1
2 Re∑� Tr

{

U�

}

+ 1
2m2

Re∑xµ Tr
{

U(x,µ)
}

)

. (5.2)

In eq. (5.2) the integration overΩ has disappeared; consequentlyΩ in eq. (5.1) does not describe
any degree of freedom. We force the integration over the gauge orbitUΩ by means of the explicit
sum overΩ. In doing this we gain an interesting theoretical setup of the model and its relation with
the continuum limit as in eq. (4.2). Moreover we get results which are less noisy.
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6. Order Parameter and Functionals

The energy-per-site functionalE = 1
N

∂
∂β lnZ

E =
1

2N

〈

Re∑
�

Tr{U�}+m2∑
xµ

Tr{Ω†(x)U(x,µ)Ω(x+µ)}
〉

. (6.1)

Moreover we introduce the order parameter

C=
1

DNβ
∂

∂m2 lnZ =
1

2ND

〈

Re∑
xµ

Tr{Ω†(x)U(x,µ)Ω(x+µ)}
〉

. (6.2)

Then we have the plaquette energy

EP =
2

D(D−1)N

〈

1
2
Re∑

�

Tr{U�}
〉

=
2

D(D−1)

[

E−Dm2
C

]

. (6.3)

There are some simple properties that will be of some help in the sequel. Under the mapping

U(x,µ)→−U(x,µ) (6.4)

the Wilson action is invariant while the mass part changes sign.

The measure of the group integration is invariant, then we have from eqs. (5.1), (6.1) and (6.2)

Z[β ,−m2,N] = Z[β ,m2,N]

E[β ,−m2,N] = E[β ,m2,N]

C[β ,−m2,N] =−C[β ,m2,N]. (6.5)

7. Gauge Invariance

The action is invariant under the local gauge transformations (left)

U(x,µ)→ gL(x)U(x,µ)gL(x+µ)†

Ω(x)→ gL(x)Ω(x), ∀gL(x) ∈ SUL(2) (7.1)

and under the global gauge transformations (right)

U(x,µ)→U(x,µ)
Ω(x)→ Ω(x)g†

R, ∀gR ∈ SUR(2). (7.2)
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8. The gauge invariant Fields

The presenceΩ allows the introduction of a set ofgauge invariantfields.

C(x,µ) ≡ Ω†(x)U(x,µ)Ω(x+µ) =C0(x,µ)+ iτaCa(x,µ)

iτaCa(x,µ) =−iaΩ†
(

Aµ(x)− iΩ∂µΩ†
)

Ω+O(a2)

C0(x,µ) = 1− a2

4
Tr
{

(Aµ − iΩ∂µΩ†)2
}

+O(a4). (8.1)

C0(x,µ) is the mass term density in the action (4.1) and it is aSU(2)R-scalar, whileCa(x,µ) are
vectors under the same group of transformations. SinceC(x,µ) ∈ SU(2), we get that all fields are
real and moreover

C0(x,µ)2+∑
a

Ca(x,µ)2 = 1. (8.2)

Moreover we expect the vacuum to be invariant underSUR(2) global transformations and therefore

〈Ca(x,µ)〉 = 0

〈Ca(x,µ)Cb(y,ν)〉C = 0, a 6= b, a,b= 1,2,3. (8.3)

In order to investigate the transition between phases we consider also

∂
∂m2C=

β
DN ∑

xµ
∑
yν

〈

C0(x,µ)C0(y,ν)
〉

C

=
β

DN ∑
xµ

∑
yν

(〈

C0(x,µ)C0(y,ν)
〉

−
〈

C0(x,µ)
〉〈

C0(y,ν)
〉)

. (8.4)

It should be noticed that the mean square error ofC is related to its derivative

∂
∂m2C= βDN

〈(

C−〈C〉
)2〉

. (8.5)

This relation is very important for numerical simulations.If the derivative ofC increases by in-
creasing the lattice size (as it is expected in a inflection point becoming more and more steep), we
expect some anomalous behavior of the mean square error. I.e. the system becomes noisy. If the
derivative ofC has a finite limit forN → ∞, the standard deviation has the normal 1/

√
N behavior.

If instead the derivative diverges then the standard error might be anomalous in the limit. If this is
the case, then the calculation of the derivative by using theincremental ratio yields a noisy signal.
The noise might not decrease forN → ∞.

9. Numerical results

We plot in Fig. 1 the pointsβ ,m2 where the order parameterC has a marked inflection as func-
tion ofm2, as shown in Figs. 2, 3 and 4. On these points all the derivatives (∂E/∂m2,∂E/∂β ,∂C/∂β )
have some peak. The peak heights increase with the size of thelattice forβ > 2.2. In the literature
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Figure 1: Phase diagram
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Figure 2: m2 derivative of the order parameter.β = 1.0

[10] the exact position of the end point is discussed together with the nature of the phases above
and below the transition line. It is commonly accepted [10] that one has confinement below the PT
line for β > 2.2 and a cross-over line fromβ ≃ 2.2,m2 = 0 to β ≃ 2.2,m2 ≃ 0.381 (end point).
The sequence of Figures 5, 6, 7, 8 and 9 show theβ -dependence of the energyE along the straight
lines at constantm2. One observes the presence of the crossover region and of thephase transition
line while they merge.

We do not discuss these items, since we are primarily interested in the features of the phases.
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Figure 3: m2 derivative of the order parameter.β = 2.35
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Figure 4: Order parameter atβ = 1.5 andβ = 2.2.

We have done some systematic search on the operators

Ca,µ(t) :=
1

√

N
3
4
∑
~x

Ca(~x,x4,µ)
∣

∣

∣

∣

x4=t
, a= 0,1,2,3, µ ,ν = 1,2,3,4 (9.1)

by evaluating the connected two-point correlators as in Fig. 10

Cab,µν(t) :=

〈

Ca,µ(t + t0)Cb,ν(t0)

〉

C
. (9.2)
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Figure 6: Scan ofβ derivative ofE. II

Numerical simulations support the selection rules

C0b,µν(t) = 0

Cab,µν(t)

∣

∣

∣

∣

a6=b
= 0, a,b= 1,2,3 (9.3)

imposed by the globalSU(2)R invariance.

The spin analysis is done by decomposing the correlators into a spin one and spin zero parts

8
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Figure 7: Scan ofβ derivative ofE. III

 0

 2

 4

 6

 8

 10

 12

 1.8  2  2.2  2.4  2.6  2.8  3  3.2

β=4/g2

d/dβ Energy, Size 124, Copies 104

 m2=0.40
 m2=0.35
 m2=0.01

Figure 8: Scan ofβ derivative ofE. IV.

(dots stand for 00 or 11)

C···,µν(t) =V...(t)(δµν −δ4µδ4ν)+S...(t)δ4µ δ4ν . (9.4)

We fit the amplitudes by a single exponential form

F(t) = a+be−t∆. (9.5)

9
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Figure 9: Scan ofβ derivative ofE. V
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Figure 10: Time correlators. The polarizations are the same (Spin = 1)
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Figure 11: Energy gaps forβ = 2.2

10. Below the Phase Transition Curve

Near them2 = 0 line one can integrate overΩ and then
〈

C(x,µ)C(y,ν)†
〉

= 1δxyδµν . (10.1)

Thus we really test only the screening.

11. Above the Phase Transition Curve

In Fig. 11 the isovector part of the meson fields describes particles of Spin 1.
Far away from the transition line the energy gap is approximatively given by

∆ ≃
√

|m2|. (11.1)

Moreover Fig. 11 shows that also the isoscalar part ofC(x,µ) describes a spin one state. The
energy gap is compatible with the threshold of the isovectorspin one fields.

12. Conclusions

• Lattice gauge theory is very promising as a regulator for massive Yang-Mils theory. It is
important to learn how to relate dimensionally regularizedamplitudes with those from the
lattice.

• Simulations support the conjecture that above the transition line andm2 ∼ 0 the lattice has
different phases. In the massless case Goldstone bosons andlongitudinal modes decouple.
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• In lattice gauge theory the evaluation of amplitudes near the transition line is at reach.

Finally we can conclude that the lattice simulation supports the conjecture made on the massive
Yang-Mills theory with no Higgs (eq. (1.2)): at very high energy a phase transition separates
the low energy regime from the high energy limit where longitudinal polarizations and Goldstone
modes decouple.
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