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The LHCb Upgrade from 1 to 40 MHz readout
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The LHCb experiment at the LHC will upgrade its detector to take data at luminosities of above
1033 cm−2s−1 from 2018 onwards. The fully upgraded detector will use a new front-end electron-
ics to readout collision events at 40MHz. A new fully software based trigger will be implemented
and will increase the trigger efficiencies, specially in the hadronic decay channels. The silicon
vertex detector baseline design will use pixel technology. The upgraded detector will accumulate
in excess of 50fb−1 of data, giving radiation doses of 4 × 1015 neq and above at the edge of the
silicon. This requires an efficient cooling system to avoid thermal runaway . The existing cooling
system based on evaporative CO2 will be adapted. A strong R&D program has started on sensor
material and radiation hardness, thickness, guard ring structures and the final module layout. In
parallel the design of a new radiation hard ASIC for pixel readout, namely VELOpix, is progress-
ing well. The main challenge will be the large multi Gbps data rates on and off this chip. In terms
of precision, pattern recognition and impact parameter resolution, the goal is to achieve the same
or better performance than the current vertex detector at the LHCb experiment.
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The LHCb vertex detector upgrade Abraham Gallas

1. The LHCb upgrade: scenario and strategy

The LHCb experiment [1] at the LHC is currently running with excellent performance and it
is expected that the experiment will collect an integrated luminosity in proton-proton collisions of
around 1 fb−1 by the end of 2011. It is planned to continue operating the experiment in its present
layout until 2018, accumulating in excess of 5fb−1 and allowing the experiment to cover its primary
physics goals, namely the search for New Physics via the measurement of CP asymmetries and rare
decays of b and c quarks. The time to double statistics then becomes too long to continue operating
the experiment without a major upgrade. Even though LHCb is already operating beyond its design
luminosity with L = 2× 1032 cm−2 s−1, the LHC is already capable of delivering much higher
luminosity to the experiment. LHCb plans to take advantage of this with an upgrade planned for
2018 [2]. The experiment will boost its data taking capabilities by reading out the entire detector
at 40 MHz, allowing it to run at higher luminosity (L > 2033 cm−2 s−1) and to increase the trigger
efficiencies, specially in decays to hadronic final states. The upgrade will allow LHCb to acquire
an integrated luminosity of > 50 fb−1 (5 fb−1/year) at a higher center of mass energy of

√
(s)=14

TeV. The increase of luminosity is achieved by changing the beam parameters at the interaction
point and does not depend on any LHC machine upgrade, hence the LHCb upgrade is independent
of (but compatible with) the plans for the HL-LHC. The large data samples of b and c hadron
decays will allow for more precise measurements in the flavour sector. These measurements have
a wide-ranging sensitivity to New Physics effects and are a powerful method to both search for
New Physics and to characterize its nature when found. The scientific goals of LHCb, however,
extend far beyond quark-flavour physics. The upgraded experiment can be regarded as a multi-
purpose detector in the forward direction. The unique acceptance, coupled with the flexible trigger,
will enable LHCb to make measurements that are either complementary to, or of higher sensitivity
than, those which are done at the LHC general purpose experiments (ATLAS/CMS).

At the present time LHCb trigger system [3, 1] has two levels: Level-0 (L0) is a hardware
trigger while the High Level Trigger (HLT) consists of a software application which runs on a
CPU-farm. The purpose of L0 is to reduce the rate of crossings with interactions to a maximal
event rate of 1MHz (determined by the front-end electronics) so the HLT can process them in the
CPU-farm. This hardware trigger uses information from objects of high transverse energy in the
calorimeters and the muon chambers. Increasing the collision rate by running at higher luminosity
requires that the thresholds of the L0 trigger should be raised. This leads, in particular for the
hadronic channels, to a drop efficiency and even a lower total event yield. The time available to
this first level hardware trigger is too short to try to implement a more complex decision, even if
extra information could be made available. It was decided to increase the readout rate to 40MHz
and implement a flexible event filtering in software on a larger CPU-farm. This implies that all the
front-end electronics must be redesigned or adapted to transfer data of all the crossings to this CPU-
farm and to zero suppress the data to reduce the required bandwidth. A low level hardware trigger
(LLT) with similar functionality to L0 will be implemented. The LLT will enrich the selected
sample with interesting events (not simply pre-scale to a rate acceptable by the DAQ and the CPU-
farm like the L0), will protect against occupancy fluctuations that prevent full readout, and will
have a tunable output rate to cope with the insufficient CPU-farm power in the beginning. The
high level algorithms running in the CPU-farm will have all the event information available. It is
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anticipated that a factor up to 2 in efficiency can be reached for the hadronic modes, which can
be combined with the gain of running at higher luminosity. This trigger architecture will have an
output rate to storage of ∼20kHz.

2. The vertex detector upgrade

In the case of the vertex detector, the front-end electronics is strongly integrated with the sili-
con sensor. This implies that for the upgrade the detector modules have to be completely redesigned
and rebuilt. Furthermore, they have to cope with the increased radiation environment (a factor 10)
which goes beyond the current design. The baseline choice for the replacement of the present ver-
tex detector (Vertex Locator, VELO [4]) is a pixel based device [2, 5], based on an evolution of the
Timepix/Medipix family of chips [6]. This consists of a 256×256 array of square pixels, which
brings advantages in the pattern recognition in comparison to the R and φ strip geometry used in the
current VELO with the absence of fake combinatorial hits. Furthermore the equal precision in both
orientations will halve the required number of measuring planes and therefore the total material
budget.

It is intended to reuse many systems of the existing VELO detector, such as the mechanics
and motion system, the vacuum systems, the power systems (LV/HV) and the evaporative CO2

cooling system. The upgraded VELO will keep the concept of retractable detector halves around
the beam axis, but the silicon modules and foil will be redesigned to meet the detector challenges
outlined below: the high irradiation environment that will demand a efficient and low-mass cooling
system to avoid thermal runaway of the silicon, the enormous on- and off-chip data rates, the low
total material budget required to achieve or improve the excellent hit resolution (∼ 4-10µm) of the
current detector [7].

2.1 Environment: Irradiation dose, data rates and occupancies

In both the current and upgraded detector the trigger algorithms of LHCb rely on the impact
parameter cut. Therefore the impact parameter resolution is a very important performance number
for the detector. This resolution, among other parameters, depends strongly on the radius of the
first measured point [8]. It is therefore crucial to place the sensor as close as possible to the beam
line during the proton-proton collisions. The sensor edges are placed at 7 mm from the beam.
After 50 fb−1 of integrated luminosity they will accumulate a dose of up to 0.41×1016 neq cm−2 or
185Mrad, see figure 1. Recent studies [9] have shown that 300µm thick silicon irradiated to these
levels still delivers a signal of 10ke−/MIP. That dose will induce leakage currents in 200µm thick
silicon sensors of Ileak ' O(100)µA/cm2 at -15◦C and a bias voltage of ∼ 900V at the inner most
radius. The corresponding heat dissipation, IleakV heats the silicon, which in turn results in larger
leakage current. An efficient heat removal is mandatory to avoid thermal runaway at the edge of
the sensor from bulk current and heat injected by the readout ASIC. This has to be implemented
without introducing too much material in the acceptance. The readout electronics, apart from
having a very low noise to cope with the reduced signal, has to be extremely radiation hard and
single event upset tolerant.

The average particle density per crossing closest to the beam will be∼ 5 particles/cm2/crossing
and decrease with radial distance from the beam as r−1.9, see figure 2. Taking the model of a
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256×256 matrix pixel detector and assuming an average cluster size of 2 leads to the conclusion
that for the innermost readout chip the data rate would be∼ 13Gbit/s with a total data rate of around
3000 Gbit/s for the entire detector. This would require a minimum of 940 data links running at 3.2
Gbit/s. Furthermore, extracting the data to the pixel periphery becomes non-negligible at these
rates, and fundamental design changes to the front-end readout chip are needed. These will be
discussed later in the article. The above particle density give a rather low occupancy per event
(∼ 10−4) for a pixel size of 55×55µm2.

Figure 1: Irradiation dose as a function of radius. Figure 2: Particle occupancy per event (simulation).

2.2 Pixel module design and detector layout

The pixel module design is depicted in figure 3. Four 3-ASIC pixel tiles are assembled in
a L-shaped layout on alternating sides of a High Thermal Conductivity (HTC) 400µm substrate.
The L-shaped design ensures that the pixel columns are oriented in a way that the maximum rate
is experienced at the end of the column and not along its full length, and the bandwidth is shared
among the columns. The pixel tiles, (Fig. 4 top) consist of three readout ASICs, with dimensions
14mm × 18mm, bump bonded on a common silicon sensor of a size of 43×15mm and with a
single guard ring of 500µm. Between ASICs, the use of elongated pixels avoids loss of detection
efficiency. Past experience indicates that a balanced 2-sided design keeps the structure planar
and eases the construction minimizing the distortions due to temperature variations both during
construction and operation. The four sensor tiles are arranged on opposite sides of the substrate
such that they overlap in the transverse plane minimizing dead areas caused by guard rings or
peripheral circuitry of the ASIC (Fig. 4). For the innermost ASICs, metal traces on the substrate or
kapton bring the signals to miniaturized connectors. The HTC substrate is made of pCVD diamond.
It provides the necessary mechanical stability and drains the heat to the cooling channel. This
substrate extends about 1cm beyond the edge of the tiles and allows the attachment of a cooling
channel and the installation of the above mentioned miniaturized connectors. The outer part of
the module where the material is less critical, consists of TPG (Thermal Pyrolytic Graphite) frame
which acts as a support for the cooling and all the readout infrastructure. So far in this design, the
innermost edge of the silicon is a 7mm from the beam axis and the active area starts at 7.5mm,
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Figure 3: Layout of the upgraded VELO pixel station.
A station consists of two L-shaped modules around the
beam axis.

Figure 4: Top : Sensor tile. Bottom : Module
cross section

given a guard ring of 500µm. Any possible reduction in either the distance to the beam or the size
of the guard ring would improve the impact parameter resolution performance of the detector as it
was mentioned in the previous section. A R&D program is being pursued to achieve that goal.

The detector layout (Fig. 5) comprises two movable detector halves on either side of the beam
line (dashed red line in Fig. 5) as in the current VELO. Each of these halves consists of 26 modules
with varying spacing along the beam axis. The minimal pitch is 24mm. The two detector halves
have a relative offset to each other along the beam line. Furthermore, modules from opposite halves
are positioned such the sensitive areas are overlapping in some regions for tracks emerging from the
interaction point. This results very helpful for the precise relative alignment of the detector halves.
This layout has a active area of ∼ 100% with the exception of some small gaps. Using this layout

Figure 5: Detector layout of the upgraded VELO

for the VELO, the decay Bs → DsK has been simulated in the LHCb detector acceptance (15mrad-
250mrad×300mrad). The efficiency for reconstructing the four tracks in the LHCb acceptance has
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been found to be 98.3%(99.7%) if 4(3) hits are required per track. For this detector layout, the
shape of the foil that separates the secondary vacuum of the VELO from the primary LHC vacuum
must be modified to accommodate the L-shaped structure.

2.3 The R&D on sensors

2.3.1 Reduction of the guard ring size

A smaller guard ring will allow the sensitive area to be closer to the beam improving the impact
parameter resolution as already discussed in section 2.1. The gaps in the module design will be
as well reduced due to reduction of the inactive sensor material.Testing structures and prototypes
are being produced at the time of the writing at the IMB-CNM (Barcelona). The goal is to achieve
dicing distance from the sensitive area of the sensor down to 250µm or less. The guard ring
structures should withstand ∼ 900V after irradiation.

2.3.2 Reduction of sensor thickness

In order to reduce material in the active area, both the ASICs and the sensors can be thinned
after manufacturing. It has been proved at CNM that it is possible to thin silicon down to 150µm,
or to 100µm for the sensors and afterwards bump bonded them on to ASICs. The thinning of the
ASICs can be performed beyond that. The use of a supporting structure is a must, however bowing
and handling difficulties may limit what can be achieved here.

2.3.3 Sensor options

Different options are actively being evaluated in test beams regarding their charge collection
efficiency, leakage currents, charge sharing characteristics and position resolution at the required
radiation dose.

Planar Silicon A significant amount of experimental data has been acquired in the last years
showing a surprisingly large charge collection in severely irradiated silicon detectors. A 140µm
planar silicon sensor can provide a signal of 6000e− for a MIP particle even after doses as high as
1×1016neqcm−2 [11]. After this levels of irradiation, thin detectors (140µm) also provide a higher
signal charge than thicker (300µm) at the same bias voltage, because of the a charge multiplication
effect at high electrical field [11]. Several sensor wafers n-in-p are being produced at different
manufacturers, with different thicknesses (from 50µm to 300µm), different guard ring structures
and dimensions (up to 3x1 ASIC tiles). These sensors will be used in the R&D above mentioned
and in the prototyping of a first sensor tile with two Timepix ROC [6]. The charge sharing is
expected to diminish with irradiation, this as well as the different design of guard ring structures
will be investigated during the next irradiation and test beam campaigns.

3D pixel detectors 3D pixel sensors have demonstrated the largest charge collected for any given
fluency of any known silicon technology. In contrast to the planar sensors, 3D detectors deplete
laterally. The distance between the electrodes is very small resulting in high electric fields and high
drift velocities with relative low bias voltages, reducing as well the trapping probability. The greater
signal charge is due to the faster collection times that make the devices radiation hard. Moderate
bias voltages, 150V, are necessary for 100% charge collection for fluencies up to 1015neqcm−2 [12].
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Higher radiation doses reduce the collection efficiency but for 1016neqcm−2 the collected charge at
150V is 44% (10k electrons) and charge multiplication is also observed at higher bias voltage [13].
The reduced bias voltage also lower the risk for thermal runaway.

These devices are difficult to produce, nevertheless the University of Glasgow in collaboration
with IMB-CNM Barcelona, have developed a new type of 3D detector known as double-sided 3D
sensors [14], which eases the fabrication difficulties and has been demonstrated with high yield
in several productions runs in the last years. Furthermore this new design improves the areas of
inefficiency of the detector. An additional advantage of the 3D technology is that the self-shielding
geometry and the additional processing can allow devices to be active within 10µm of the physical
edge.

p-CVD diamond For the radiation fluencies envisaged for LHCb upgrade, the Chemical Vapor
Deposition (CVD) diamond has some appealing properties as a sensor element. It has been demon-
strated to be extremely radiation tolerant. Besides, the leakage currents remain low after irradiation
so there is not risk of thermal runaway. In addition its large thermal conductivity may be exploited
for intelligent integrated cooling concepts so the diamond substrate acts as a sensor and at the same
time as a thermal path. Given the modest total sensor surface of ∼1340 cm2, the diamond sensor
option could be financially affordable for the VELO upgrade. Some pCVD diamond samples suit-
able for bump bonding with Timepix ASICs were acquired. Collection lengths between 200 and
250µm were measured with a 90Sr source in the 5 samples bought. These measurements and other
properties such efficiency and spatial resolution are under way in tests with beams.

Strip option In case material budget or power of the pixel option goes beyond acceptable levels,
a strip solution is also under development, with finer pitch, higher granularity and lower mass than
the current VELO. New sensors have been designed and sent for production at Hamamatsu and are
expected by the end of this year. For this option a 40MHz radiation hard ROC has to be designed.
This ASIC development would be in common with any ASIC developed for a possible silicon strip
readout for the upgraded Silicon Tracker.

2.4 Data readout rates

As pointed out in section 2.1, the particles rate will be very high close to the beam , averaging
200 MHz per ASIC. Assuming an average cluster size of 2 pixels and 32 data bits per pixel hit
leads to the conclusion that from the innermost chip the data rate would be 13 Gbit/s. The 32 data
bits are composed of 4 bit for ToT (‘time-over-threshold’) value, 12 bit for bxo (‘bunch crossing’)
identification and 16 bit for the pixel identity. A 30% reduction can be obtained by clustering the
data of simultaneous and nearby hits, since the bxo and some pixel address bits can be shared. An
architecture has already been developed to minimize the data bandwidth from the pixel matrix [15].
This is based on grouping the digitized data from a 4×4 array (a super-pixel) and transmitting this
information as a formatted and endcoded cluster. In the ASIC the digital logic of this group of 4×4
pixels will be concentrated in a single area and the analog part of the pixels is put in either side of
the digital area (Fig. 6). This brings many advantages, such as space saving (some digital blocks
can be shared), a more efficient power and global signal routing, better isolation between analog
and digital sections and the possibility of synthesize the column logic from a standard library rather
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than custom cells. A disadvantage is the possible digital noise feedback into the bonding pads on
top of the digital area.

Figure 6: 4×4 superpixel Figure 7: The main requirements of the VELOpix chip

2.5 ASIC design: the VELOpix

Specific simulation studies have demonstrated that the pixel charge has to be digitized to 4
or more bits to obtain the required spatial resolution by charge interpolation.A time-over-threshold
ADC conversion is adequate, since the maximal pixel hit rate is at most∼ 6 kHz. In fact, a maximal
ToT of 400 ns will cause a dead time < 0.5%.

The VELOpix will be developed as a follow-up to the Timepix3 [16], which is being designed
in 130 nm CMOS process. The Timepix3 is itself a follow-up to the currently existing Timepix chip
[6], and shares many design features with the current existing 130 nm CMOS Medipix3 chip. The
ASIC contains an array of 256×256 square 55µm pixels. It is 3-side buttable and measures ∼ 14
mm on each side. It will provide simultaneous time-over-threshold and time stamping information,
and will provide sparse, data-driven readout on high speed links. Timepix3 will be radiation hard
to the levels required at the LHCb upgrade.The analog functionality of Timepix3 is identical to
the requirements of the VELOpix front-end, and is listed in table 7. The modifications needed for
the final VELOpix chip will be changes to the cluster formatting and buffering, to cope with the
LHCb upgrade data rates, SEU protection, and the addition of multi-Gbit/s output links (4 × 3.2
Gbit/s) as was discussed in section 2.1. As already mentioned in section 2.7 the total ASIC power
consumption should stay below 3W, to avoid causing thermal runaway in the sensor.

2.6 The RF foil R&D

The main function of the RF foil is to act as a de f acto beam pipe, i.e. it must: separate
the primary (accelerator) and secondary (detector) vacua, carry the image currents of the particle
beams, allow for the close-in VELO sensor geometry with overlap, shield against RF noise pick-
up in the VELO front-end electronics, withstand the heat load and the high radiation levels of
the beam. This imposes very severe requirements in the design and construction of such RF foil.
It should be vacuum tight (< 10−9 mbar l/s), extremely radiation hard, conductive and thermally
stable. As discussed in section 2.2, it is necessary to redesign a new RF foil to house the new

8



P
o
S
(
V
e
r
t
e
x
 
2
0
1
1
)
0
2
0

The LHCb vertex detector upgrade Abraham Gallas

L-shape modules. Furthermore, it has been decided to reduce even more its mass (a factor of two)
[2], since it is the largest single contributor to the total material thickness of the VELO detector
(∼50%), adding significant Coulomb scattering to the vertex and tracking errors [8]. A conceptual
view of the upgraded RF foil is shown in Fig. 8.

The technologies under study include either developing a new material involving several plies
of carbon fiber polymer (CFRP) reinforced with nano-particles and coated with aluminum or using
a workable metal alloy similar to AlMg3. For the first technology a proof of principle has been
performed with very encouraging results, however some issues need to be improved. In the second
technology, a first prototype with a simpler geometry was produced by direct milling of the foil
from a solid metal block with a 3-axis milling machine. The foil thickness was measured to be
300µm and the object has been tested to be leak tight to < 10−9 mbar l/s. Right now, a more
complex RF foil with the L-shape is being produced using a 5-axis milling machine. It will be
evaluated for vacuum tightness and thickness uniformity.

2.7 Cooling studies

As explained in section 2.1, because of the large particle fluence the silicon closest to the beam
will draw large currents, Ileak ' O(100)µA/cm2 at 900 V of biassing. Thermal runaway can be
avoided if the silicon is kept sufficiently cool, below about -10◦C to -15◦C. ANSYS [10] thermal
simulations of a pixel module have been done (Fig. 9). The model includes radial (r−1.9) and
temperature dependent leakage current in the silicon. The 400µm-thick pCVD diamond substrate
, described in section 2.2, extends to the edge of the sensor. The cooling channel is placed at 1 cm
from the outermost silicon edge.The simulation assumes that a two-phase CO2 cooling, as in the
current VELO, capable of maintaining the temperature of the cooling at -35◦C is feasible. Nominal
thicknesses and thermal conductivities were used. The thermal performance of the module has
been studied varying different parameters and the results suggest in order of importance: (1) The
cooling channel must be as close as possible to the silicon; (2) The ROC power must be minimized;
(3) Thermal impedances between the tiles and the substrate and between the cooling channel and
the substrate should be minimize.

Figure 8: RFoil conceptual design Figure 9: Thermal simulation.

For a maximum ROC power of ∼3.0-3.5 W/chip CO2 cooling should be sufficient to avoid
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thermal runaway up to a dose ∼1016 neq/cm2, giving a safety factor of two above the expected
upgrade fluence. The verification of the simulation with thermal mockups are envisaged. Identi-
fication of the adhesives and the process to glue the sensor tiles onto the pCVD substrate using a
very thin layer of epoxy are being investigated. The process should be repeatable and the epoxy
layers should be capable of stand shear from CTE differences. Since the detector modules are op-
erated in the secondary vacuum (10−6 mbar), leakage from the cooling system has to be avoided by
using a pre-engineered leak tight system and attaching the cooling channels during module instal-
lation. The development of such a low mass cooling channel compatible with the substrate CTE
and adequate thermal performance is a priority.

2.8 Test beam results

The performance of the Timepix chip for charged particle tracking has been verified with the
construction of a dedicated Timepix telescope and an extensive characterization of a series of hybrid
pixel devices, including 300 and 150 µm thick planar sensors and irradiated and non irradiated 3D
sensors [17, 18]. A first version of this telescope is described in [5]. Several improvements have
been applied to this telescope. Nowadays, this telescope has a track rate capability greater than
5kHz with a resolution at the Device Under Test (DUT) down to 1.5 µm. It has implemented
a TDC for the trigger scintillator fingers that in conjunction with a Timepix plane in ToA gives
a track time stamping ∼ 1ns. It is able to provide and record synchronized triggers to 40MHz
readout systems used in the LHC. A standard 300 µm sensor bump bonded to a Timepix has been
evaluated in the telescope and has shown a resolution of 4 µm, together with very high efficiency
and accurate charge calibration [17]. Fig. 10 shows a direct comparison of the resolution as a

Figure 10: The figure shows the residuals be-
tween the tracks and the clusters at the DUT, as a
function of the track angle for two thicknesses of
the sensor (300 µm and 100 µm)

Figure 11: Biasing voltage dependence of the
resolution as a function of angle track for the
300µm thick sensor

function of the incident track angle for 300 and 150 µm thick sensor in identical conditions. The
change in optimum angle as well as the small degradation in resolution is clearly demonstrated for
the thin sensor. In Fig. 11 it is shown for the 300 µm thick sensor the resolution as a function
of the incident track angle for two different biasing voltages: 10 V (close to depletion) and 100V
(over-depleted). There is a clear gain at lower voltage, due to the extra diffusion and charge sharing
corresponding to the lower electric field, however it should be noted that this result is for the slower
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peaking time of the current Timepix electronics (∼100 ns) and needs to be investigated for faster
peaking times.

3. Conclusions

The LHCb upgraded detector will be installed in 2018. The electronics of all the sub-detectors
has to be adapted or replaced to be able to read out events at 40MHz. The VELO detector modules
will be rebuilt taking as a baseline a pixel sensor. The conceptual module and detector layout are
quite advanced. The R&D on sensor technology, readout ASIC design, cooling system and RF foil
enclosure are progressing well.
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