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1. Introduction

The method of dispersive sum rules [0] is one of the widely used methods for obtaining prop-
erties of ground-state hadrons in QCD. The method involves two steps:

(1) One calculates the relevant correlator in QCD at relatively small values of the Eucledian
time;

(i) One applies numerical procedures suggested by quark-hadron duality in order to isolate the
ground-state contribution from this correlator. These numerical procedures cannot determine
a single value of the ground-state parameter but should provide the band of values containing
the true hadron parameter. This band is a systematic, or intrinsic, uncertainty of the method
of sum rules.

An unbiased judgement of the reliability of the extraction procedures adopted in the method of sum
rules may be acquired by applying these procedures to problems where the ground-state parameters
may be found independently and exactly as soon as the parameters of theory are fixed. Presently,
only quantum-mechanical potential models provide such a possibility: (i) the bound-state param-
eters (masses, wave functions, form factors) are known precisely from the Schrédinger equation;
(ii) direct analogues of the QCD correlators may be calculated exactly.

Making use of these models, we studied the extraction of ground-state parameters from dif-
ferent types of correlators: namely, the ground-state decay constant from two-point vacuum-to-
vacuum correlator [B], the form factor from three-point vacuum-to-vacuum correlator [B], and the
form factor from vacuum-to-hadron correlator [B]. We have demonstrated that the standard proce-
dures adopted in the method of sum rules not always work properly: the true value of the bound-
state parameter was shown to lie outside the band obtained according to the standard criteria. These
results gave us a solid ground to claim that also in QCD the actual accuracy of the method may be
worse than the accuracy expected on the basis of applying the standard criteria.

We realized that the main origin of these problems of the method originate from an over-
simplified model for hadron continuum which is described as a perturbative contribution above a
constant Borel-parameter independent effective continuum threshold. We introduced the notion of
the exact effective continuum threshold, which corresponds to the true bound-state parameters: in
potential models the true hadron parameters are known and the exact effective continuum thresh-
olds for different correlators may be calculated. We have demonstrated that

(i) The effective continuum threshold is not a universal quantity; it depends on the correlator
considered (i.e., it is different for two-point and three-point vacuum-to-vacuum correlators);

(i) The effective continuum threshold depends on the Borel parameter and, for the form-factor
case, also on the momentum transfer [B, 8, B, B, 0]. In QCD, the effective threshold depends
in addition on the renormalization scale.

In the recent publications [B] we proposed a new algorithm for extracting the parameters of the
ground state. The idea formulated in these papers is to relax the standard assumption of a Borel-
parameter independent effective continuum threshold and to allow for a Borel-parameter dependent
quantity. This talk explains the details of this procedure and its application to decay constants of
heavy mesons.
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2. OPE and sum rule in quantum-mechanical potential model

Within the standard calculations based on perturbation theory, one start with a free Lagrangian
and includes interactions order by order. Respectively, the basic object for perturbative calculations
is the Feynman propagator. However, in a confining theory like QCD, the full propagator in the
“soft” region of small momenta differs strongly from the Feynman propagator. The Feynman
propagator of a nonrelativistic particle with the mass m has the form

- 1
Dp(EK?)= 50— ——— 2.1
( ) k% —2mE —i0
Fig. M compares the Feynman and the exact propagators at £ = 0 in a quantum-mechanical potential
model for the case of the harmonic-oscillator potential V = m®?r?/2. This simple model allows
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Figure 1: Feynman vs exact propagator of a confined nonrelativistic particle.

one to calculate the exact propagator of a confined particle explicitly and illutrates the typical situ-
ation for a confining potential of a general form. Obviouly, the Feynman and the exact propagators
are close to each other for large momentum transfers, but differ sizeably in the “soft” region. As
soon as the “soft” momenta are essential in Feynman diagrams of the perturbation theory, nonper-
turbative effects in the propagators become essential. At large values of 2, one obtains

2 4

- - (0] [0)
Dexact(kz) = DF(k2> + 02%72 + C4? +... 2.2)

Nonperturbative effects in the propagator may be described in terms of an expansion in powers of
»*/ k2. These nonperturbative effects appear then as power corrections in the correlation functions.

Let us consider a realistic quantum-mechanical potential model containing both the Coulomb
and the confining interactions. The corresponding Hamiltonian has the form

k2
= %’
Polarization operator I1(E) and its Borel transform I1(T) [E — T, 1/(H —E) — exp(—HT), T the
Borel parameter] are defined via the full Green function G(E) = 1/(H —E) [H]:

1
H(E) = {7y =0l =5 IFi=0),  ILT) = (Fy = Olexp(~HT)|F: = 0). 24

H=Hy+V(r);  Hp V(r) = Veont(r) -

@ 2.3)
.
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The expansion of G(E) and II(E) in powers of the interaction is obtained with the help of the
Lippmann-Schwinger equation

G(E)=Go(E)— Go(E)VGo(E)+ Go(E)VGo(E)VGo(E) + ..., (2.5)
where Go(E) = 1/(Ho — E). Since the interaction contains now two parts, Veont(r) and £, the
expansion (Z3) is a double expansion in powers of Von and a. E.g., for the case Veone(r) = %2”2
one easily obtains the corresponding double expansion in powers of & and w7 (see Fig. D):

HOPE(T) = Hpert(T) +Hp0wer(T)a
3/2 1
Mper(T) = (ﬂ> 1 +V2rmT o+ ~mm?Ta?|
2nT 3
m \3/2[ 1 11 19
I T:(—) ——*T* (1 + = 27mT 0*T*| . 2.
pover(T) = \ 277 [ 2? TRV 180 (2-6)

One can see here a “perturbative contribution” (i.e. the one not containing the confining potential),
and “power corrections” given in terms of the confining potential (including also mixed terms
containing contributions from both Coulomb and confining potentials). A perturbative contribution
may be written in the form of spectral representation [[] yielding

I_IOPE / dze™* ppert power(T)y
ppert(Z) = (§> \/>+ \/ﬁa-i- 3v2 ] 2.7

The “physical” representation for I1(7')—in the basis of hadron eigenstates—reads:

Mpnys(T) = (Fr = 0lexp(—HT)|7; = 0) = Z Ryexp(—E,T), R,=|¥,(7= 0)\2. (2.8)
n=0
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Figure 2: Expansion of the polarization functions in powers of the interaction.
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Sum rule is just the statement that the correlator may be calculated in two ways—using the basis
of quark states (OPE) or confined bound states—leading to the same result:

Hope(T) = Hphys(T). (2.9)

In order to isolate the ground-state contribution one needs the information about the excited states.
A standard Ansatz for the hadron spectral density has the form [[]

Pphys (2) = Rg8(z — Eg) + (2 — Zefr) Ppert(2)- (2.10)

It assumes that the contribution of the excited states may be described by contributions of diagrams
of perturbation theory above some effective continuum threshold zeg. This effective continuum
threhsold (different from the physical continuum threhsold which is determined by hadron masses)
is an additional parameter of the method of sum rules. Using Eq. (-I0) yields

Zeff

Ree BT = / dze " Poert(2) + Mpower (T) = Mayar (T Zefr). @.11)

0
As soon as one knows zefr, one immediately obtains estimates for R, and E,, Raual(T,Zfr) and
Equal (T, zetr) = —d7 10gTI(T, zefr). These however depend on unphysical parameters 7' and Zeg.

3. Exact effective continuum threshold

Eq. (10) is motivated by quark-hadron duality which claims that far above the threshold the
hadron spectral density is well described by diagrams of perturbation theory. However, near the
physical threshold—and this very region turns out to be essentail for the calculation of ground-state
properties—the duality relation is violated.
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Figure 3: Exact effective threshold for the polarization operator in a quantum-mechanical model for the
potential containing confining harmonic-oscillator and Coulomb interactions (B).

The advantage of quantum mechanics is that the exact E, and R, may be obtained by solving
Schrodinger equation [[[]. We can then calculate ze¢ from

Zeff
Ree 5T — / dzeT poert(2) + Mpower (T). 3.1)
0
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Figures B,A and B provide the exact results for the effective thresholds obtained for the ground
state of the Hamiltonian (Z3). We consider a set of confining potentials Veone(r) = o, (mr)", n =
2,1,1/2, and adopt parameter values appropriate for hadron physics, i.e., m = 0.175 GeV for the
reduced constituent light-quark mass and o = 0.3, and adapt the strengths o, in our confining
interactions such that the Schrédinger equation yields for each potential the same W(r =0) = 0.078
GeV*/2, which requires 0, = 0.71 GeV, 01 = 0.96 GeV, and 0y, = 1.4 GeV [0].

As shown in Fig. B, the obtained “exact threshold” z.g(7") for the polarization operator turns
out to be a slightly rising function of T [O].
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Figure 4: Exact effective threshold ke (7T = 0,Q) for the elastic form factor for various confining inter-
actions Veonf(r) = 0, (mr)", n =2,1,1/2 [@] Short-dashed (black) line: harmonic-oscillator confinement,
n = 2; full (red) line: linear confinement, n = 1; long-dashed (blue) line: square-root confinement, n = 1/2.
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Figure 5: Exact effective threshold kg (T = 0, Q) for the transition form factor for the case of harmonic-
oscillator potential [O]. Ry = [¥(r = 0)|2.

It should be taken into account that in general the effective continuum threhsold depends on the
type of the correlator considered, on the details of the confining interaction, and for the three-point
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functions, also on Q. Figures B and B present the results of our calculations of the exact effective
thresholds for the vacuum three-point correlators at T = 0. Obviously, the exact effective thresholds
in the region of small momentum transfers Q depend rather sizeably on Q? and on the type of the
hadron observable under consideration. Interestingly, due to the factorization properties of the
amplitudes of exclusive processes at large momentum transfers, the exact effective thresholds for
different correlators approach the same universal constant, related to the value of the bound-state
wave function at the origin. For further details consult [@].

4. OPE and sum rule in QCD

Now, we briefly recall the main ingredients of the QCD sum-rule calculation of the ground-
state decay constant. The basic object is the two-point function in QCD

() =i [dxe™ @7 (56740 19).  js(0) = (mo+mainQl) @1

The physical QCD vacuum |€Q) is expected to have a complicated nontrivial structure and to differ
from perturbative QCD vacuum |0). One calculates (Bl) by constructing the Wilsonian operator
product expansion (OPE) for T-product of two current operators:

T (js()50)) = ot )T+ LGl ) : (0, ) : (42)

One now needs to describe properties of the physical QCD vacuum. This is done by introducing
condensates — nonzero expectation values of gauge-invariant operators over physical vacuum:

(Q[:000,u): Q) #0. (4.3)

As the next step, one obtains the dispersion representation for the purely perturbative contribution
to I1(p?) and performs the Borel transform (p> — 7) which corresponds to turning from Green
functions in Minkowski space to time-evolution operator in Euclidean space. The Borel transform
kills the possible subtraction terms in the dispersion representation for I(p?) and improves the
convergence of the perturbative expansion. Finally, one comes to

oo

H<T) = / einppert(saavanu)ds+Hp0wer(77mQau>v
(mQ+mu)2
2
O Ot
Pperc(s, 1) = P (s) + frmp(”(sH <7(Tu)> pP(s)+-- (4.4)

where Ipower (T, 1) is the nonperturbative contribution to IT(7). ITyower(T, i) is given by a power
expansion in 7 in terms of the condensates and rad corrections to them. The rum rule reads

Mope(7) = IMhadron(7) 4.5)

The hadronic part of the sum rule contains the contributions of the ground state and the hadron-
continuum states. At this point one invokes quark-hadron duality approximation:

oo

dsexp(—sT)Ppen(s) = / T dsexp(—sT)Praar(s). 4.6)

Seff Sphys.cont.
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With the help of this duality approximation, the contribution of the excited states cancels against
the high-energy region of the perturbative contribution, and relates—quite similar to the case of
quantum mechanics— the ground-state contribution to the low-energy part of Feynman diagrams
of perturbative QCD and power corrections [[2]:

Seff
—M?2 _
féMQe MpT / e Srppert(sa a7mQ7H)dS + Hpower(fvay.ll) = Hdual(fv.uyseff) “.7)

(mQ+mL1)2

In order to extract the decay constant one should fix the effective continuum threshold s.g which,
as illustrated in quantum mechanics, should be a function of 7; otherwise the T-dependences of
the L.h.s. and the r.h.s. of (BZ2) do not match each other. The exact ses corresponding to the exact
hadron decay constant and mass on the Lh.s. is of course not known. The extraction of hadron
parameters from the sum rule consists therefore in attempting (i) to find a good approximation to
the exact threshold and (ii) to control the accuracy of this approximation. For further use, we define
the dual decay constant fy,, and the dual invariant mass Mgy, by relations

_ 2
St (7) = My €0 Tyl (7, 5ei1(7)), (4.8)

d
M3 (7)) = —Elogndual(’r,seff(’c)). (4.9)

5. A new algorithm for fixing the effective continuum threshold

If the mass of the ground state is known, the deviation of the dual mass from the actual mass
of the ground state gives an indication of the contamination of the dual correlator by excited states.
Assuming a specific functional form of the effective threshold and requiring the least deviation
of the dual mass (ER) from the known ground-state mass in the 7-window leads to a variational
solution for the effective threshold. As soon as the latter has been fixed, one calculates the decay
constant from (EX).

Our algorithm for extracting ground-state parameters reads:

(i) Consider a set of Polynomial 7-dependent Ansaetze for seg:

si’r’f)(r) :s(()n)+s(1")r+s§n)rz+.... (5.1

(i1) Calculate the dual mass for these T-dependent thresholds and minimize the squared differ-

ence between the “dual” mass M3, and the known value M3 in the T-window

=

1
2:7
X =N

1

[Mgual(Ti) _Mé]z . (5.2)
1

This gives the parameters of the effective continuum thresholds sf").

(iii)) Making use of the obtained thresholds, calculate the decay constant.
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Figure 6: The dual mass (left) and the dual decay constant (right) for different Ansétze for the effective
continuum threshold.

Figure B illustrates the application of our procedure of fixing the effective continuum threshold
for the realistic case of the D-meson decay constant. Clearly, the T-dependent effective continuum
threshold leads to a much better stability of the dual mass and allows one to reproduce the knows
mass of the ground state in a rather broad window of the Borel parameter.

The crucial question which emerges at this point is how to interprete the results obtained with
different effective thresholds. To answer this question we compare the extracion of the decay
cosntant in QCD (where the exact result is not known) with the extraction of the decay constant in
potential model (where the exact result is known).

Figure @ compares the application of our algorithm in quantum mechanics and in QCD [[3].
In both cases a very similar pattern emerges. In potential model, the exact value of the decay
constant lies in the band of values provided by the results corresponding to linear, quadratic, and
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Figure 7: The outcome of our algorithm in potential model (left) and in QCD (right).
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cubic effective thresholds. We have checked that this result holds independently of the specific
shape of the confining potential and for a broad range of the parameters of the potential model.
Since the extraction procedures in potential model and in QCD exhibit precisely the same pattern,
also in QCD we take this band of values as the estimate of the intrinsic uncertainty of the sum-rule
estimate for the decay cosntant. So we come to the final point of our algorithm:

(iv) Take the band of values provided by the results corresponding to linear, quadratic, and
cubic effective thresholds as the characteristic of the intrinsic uncertainty of the extraction
procedure.

Obviously, the 7-dependent polynomial effective continuum threshold allows one to reproduce
the known mass of the ground state much better; this means that the contrinution of the ground
state from the dual correlator is isolated with a better accuracy. Consequently, the accuracy of the
extraction of the ground-state decay constant imroves visibly.

6. Decay constants of charmed mesons

We now discuss the application of our algorithm to the extraction of the decay cosntants of D
and D, mesons [I4].

6.1 The Borel window

First, we must fix our working 7-window where, on the one hand, the OPE gives a sufficiently
accurate description of the exact correlator (i.e., higher-order radiative and power corrections are
small) and, on the other hand, the ground state gives a “sizable” contribution to the correlator. Since
the radiative corrections to the condensates increase rather fast with 7, it is preferable to stay at the
lowest possible values of 7. We shall therefore fix the window by the following criteria [[4]: (a) In
the window, power corrections ITyower(T) should not exceed 30% of the dual correlator Iy (7, 50).
This restricts the upper boundary of the 7-window. The ground-state contribution to the correlator
at this value of T comprises about 50% of the correlator. (b) The lower boundary of the T-window
is fixed by the requirement that the ground-state contribution does not fall below 10%.

6.2 Uncertainties in the extracted decay constant

Clearly, the extracted value of the decay constant is sensitive (i) to the precise values of the
OPE parameters and (ii) to the prescription for fixing the effective continuum threshold: trying
different Ansitze for the effective continuum threshold, one obtains different estimates for the
decay constant. The corresponding errors in the resulting decay constants are called the OPE-
related error and the systematic error, respectively. Let us discuss these in more detail.

6.2.1 OPE-related error

We perform the analysis making use of the MS scheme in which case the OPE exhibits a
reasonable convergence. The corresponding OPE parameters are summarized here:

e () = (1.279 £0.013)GeV, m(2 GeV) = (3.5+0.5)MeV, my(2 GeV) = (100 10)MeV,
as(Myz) = 0.1176 = 0.0020, <%GG> — (0.024+0.012) GeV*
(39)(2 GeV) = —((267+ 17) MeV)?, (55)(2 GeV) /(Gq) (2 GeV) = 0.8 £ 0.3. ©.1)

10
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The value of the OPE-related error is obtained as follows: We perform a bootstrap analysis by
allowing the OPE parameters to vary over their ranges using 1000 bootstrap events. Gaussian
distributions for all OPE parameters but u are employed. For u we assume a uniform distribution
in the corresponding range, which we choose to be 1 GeV < u <3 GeV for charmed mesons. The
resulting distribution of the decay constant turns out to be close to Gaussian shape. Therefore, the
quoted OPE-related error is a Gaussian error.

6.2.2 Systematic error

The systematic error of a hadron parameter determined by the method of sum rules (i.e., the
error related to the limited accuracy of this method) represents perhaps the most subtle point in the
applications of this method. So far no way to arrive at a rigorous—in the mathematical sense—
systematic error has been proposed. Therefore, we have to rely on our experience obtained from
the examples where the exact hadron parameters may be calculated independently of the method
of dispersive sum rules and then compared with the results of the sum-rule approach. As we have
seen above, the band of values obtained from linear, quadratic, and cubic Ansitze for the effective
threshold encompasses the true value of the decay constant; moreover, the extraction procedures in
quantum mechanics and in QCD are even quantitatively rather similar. Therefore, we believe that
the half-width of this band may be regarded as realistic estimate for the systematic uncertainty of
the decay constant. Presently, we do not see other possibilities to obtain a more reliable estimate
for the systematic error.

6.3 Decay constant of the D meson

The t-window for the charmed mesons, T = (0.1 —0.5) GeV 2, is chosen according to the
criteria formulated above. Figure B shows the application of our procedure of fixing the effective

100 — — —— 230 F L I B B B B R B ]
[ +0.013 1 - 4
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Fooc -0.013 E N b
80 [ ] 210 [ + Jﬁ ? [
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L 60 © : ]
g r E 190 - .
o) L O L ]
. 180 [ ]
40 : + ]
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Figure 8: (a) Distribution of fp obtained by the bootstrap analysis of the OPE uncertainties. (b) Summary
of findings for fp. The estimate obtained with the constant threshold includes the OPE uncertainty only; for
the 7-dependent QCD-SR result the error shown is the sum of the OPE and systematic uncertainties in (B2),
added in quadrature.
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continuum threshold and extracting the resulting fp. Figure Ba depicts the result of the bootstrap
analysis of the OPE uncertainties. The distribution has a Gaussian shape, and therefore the cor-
responding OPE uncertainty is the Gaussian error. Adding the half-width of the band deduced
from our 7-dependent Ansitze for the effective continuum threshold of degree n = 1,2,3 as the
(intrinsic) systematic error, we obtain the following result:

fp = (206.247.3(0pg) £ 5.1(5y50) ) MeV. (6.2)

The main sources of the OPE uncertainty in the extracted fp are its renormalization-scale depen-
dence and the error of the quark condensate.

For a 7-independent Ansatz for the effective continuum threshold a bootstrap analysis entails
the substantially lower range fl()nzo) = (18 1.3+ 7-4(0PE)) MeV, which differs from our 7-dependent
result (B2) by ~ 10%, i.e., by almost three times the OPE uncertainty. Moreover, as we have shown,
making use of merely the constant Ansatz for the effective continuum threshold does not allow one
to probe at all the intrinsic systematic error of the QCD sum rule. From our result (B2) the latter
turns out to be of the same order as the OPE uncertainty.

Allowing the threshold to depend on 7 leads to a clearly visible effect and brings the results
from QCD sum rules into perfect agreement with recent lattice results and the experimental data
(Fig. Bb). This perfect agreement of our result with both experimental data and lattice results
provides a strong argument in favour of the reliability of our procedure.

6.4 Decay constant of D; meson

We now apply our algorithm to the decay cosntant of Dy mesons. Performing the bootstrap

100_""I """"" rrTrTTTTe LI 300 —r 11T

250§_ + q]q]j T

3
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[e) v
o = L ]
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|l QCD-SR LATTICE PDG |
‘|50 U I TR T (T (T S T N S
=
-
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Figure 9: (a) Distribution of fp, obtained by the bootstrap analysis of the OPE uncertainties. Gaussian
distributions for all OPE parameters but pt. For it we assume a uniform distribution in the range 1 GeV <
1 <3 GeV. (b) Summary of findings for fp,. Lattice results are from [[[3, [A] for two dynamical light flavors
(Ny =2) and from [[[2, IX] for three dynamical flavors (Ny = 3). The triangle represents the experimental
value from PDG [[[Y]. The estimate obtained with the constant threshold includes the OPE uncertainty only;
for the 7-dependent QCD-SR result the error shown is the sum of the OPE and systematic uncertainties in
(B3), added in quadrature.
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analysis of the OPE uncertainties, we obtain the following estimate:
fo, = (245.3+15.70pg) £4.5(sys0)) MeV. (6.3)
)

As in the case of fp, a constant-threshold Ansatz yields a substantially lower value: fg::O =
(218.8£16.1(pg) ) MeV.

6.5 The ratio fp_/fp

For the ratio of the D and Dy decay constants we report the sum-rule prediction
fo./fp = 1.19340.0250pg) = 0.007 4y 6.4)

This value is to be compared with the PDG average fp_ /fp = 1.25+0.06 [[9] as well as with the
recent lattice results fp /fp = 1.24 £0.03 [3T] for Ny =2 and fp, /fp=1.164+£0.011 [Z] and
fp,/fp=1.20+£0.02 [I8] for Ny = 3. The error in (b3) arises mainly from the uncertainties in the
quark condensates (s) /(gq) = 0.8 +0.3.

6.6 Conclusions on decay constants of charmed mesons

We presented a detailed analysis of the decay constants of charmed heavy mesons with the
help of QCD sum rules. Particular emphasis was laid on the study of the uncertainties in the
extracted values of the decay constants: the OPE uncertainty related to the not precisely known
QCD parameters and the intrinsic uncertainty of the sum-rule method related to a limited accuracy
of the extraction procedure.

Our main findings may be summarized as follows.

(i) The perturbative expansion of the two-point function in terms of the pole mass of the heavy
quark exhibits no sign of convergence. However, reorganizing this expansion in terms of the cor-
responding running mass leads to a clear hierarchy of the perturbative contributions. Interestingly,
the decay constant extracted from the pole-mass OPE proves to be sizeably smaller than the one
extracted from the running-mass OPE. In spite of this numerical difference, the decay constants
extracted from these two correlators exhibit perfect stability in the Borel parameter [[4]. This ex-
ample clearly demonstrates that stability per se does not guarantee the reliability of the sum-rule
extraction of any bound-state parameter.

(i1)) We have made use of the Borel-parameter-dependent effective threshold for the extraction of
the decay constants. The 7-dependence of the effective threshold emerges quite naturally when one
attempts to increase the accuracy of the duality approximation. According to our algorithm, one
should consider different polynomial Ansétze for the effective threshold and fix the coefficients in
these Ansitze by minimizing the deviation of the dual mass from the known actual meson mass
in the window. Then, the band of values corresponding to the linear, quadratic, and cubic Ansitze
reflects the intrinsic uncertainty of the method of sum rules. The efficiency of this criterion has
been tested before for several examples of quantum-mechanical models. This strategy has now
been applied to the decay constants of heavy mesons.
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(iii) We obtained the following sum-rule estimates for the decay constants of the charmed D and
D; mesons:

fp = (206.2+7.3(0pg) £5.1(5ys)) MeV, (6.5)
fo, = (245.3£15.7(0pg) £4.5(5ys) ) MeV. (6.6)

We point out that we provide both the OPE uncertainties and the intrinsic (systematic) uncer-
tainty of the method of sum rules related to the limited accuracy of the extraction procedure.
In the case of fp the latter turns out to be of the same order as the OPE uncertainty. Notewor-
thy, adopting a 7-independent effective threshold leads to a substantially lower range fl()":O) =
(181.3 + 7-4(OPE)) MeV, which differs from our 7-dependent result (B3) by almost three times the

OPE uncertainty.

(iv) Our study of charmed mesons clearly demonstrates that the use of Borel-parameter-dependent
thresholds leads to two essential improvements:
a. The actual accuracy of the decay constants extracted from sum rules improves considerably.
b. Our algorithm yields realistic (although not entirely rigorous) estimates for the systematic
errors and allows one to reduce their values to the level of a few percent. Due to the application
of our prescription, the QCD sum-rule results are brought into perfect agreement both with the
experimental results and with lattice QCD.

7. Conclusions

The effective continuum threshold s.¢ is an important ingredient of the method of dispersive
sum rules which determines to a large extent the numerical values of the extracted hadron parame-
ter. Finding a criterion for fixing s poses a problem in the method of sum rules.

o s.ir depends on the external kinematical variables (e.g., momentum transfer in sum rules for 3-
point correlators and light-cone sum rules) and ‘ ‘unphysical” parameters (renormalization scale U,
Borel parameter 7). Borel-parameter 7-dependence of s.f emerges naturally when trying to make
quark-hadron duality more accurate.

e We proposed a new algorithm for fixing 7-dependent s.¢, for those problems where the bound-
state mass is known. We have tested that our algorithm leads to more accurate values of ground-
state parameters than the “standard” algorithms used in the context of dispersive sum rules before.
Moreover, our algorithm allows one to probe “intrinsic” uncertainties related to the limited accu-
racy of the extraction procedure in the method of QCD sum rules.
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