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1. Introduction

Modern cosmological observations allow to obtain joint constraints on cosmological parame-
ters (see, for example [1]) and indicate that the current expansion of the universe is accelerating.
The simplest model able to reproduce this late-time cosmic acceleration is general relativity with a
cosmological constant. Other models involve modifications of gravity, as for instance F(R) gravity,
with F(R) an (in principle) arbitrary function of the scalar curvature (for reviews see [2, 3]).

Higher-derivative corrections to the Einstein-Hilbert action are being actively studied in the
context of quantum gravity (as one of the first papers we can mention [4]). A non-local grav-
ity theory obtained by taking into account quantum effects has been proposed in [5]. Also, the
string/M-theory is usually considered as a possible theory for all fundamental interactions, in-
cluding gravity. The appearance of nonlocality within string field theory is a good motivation for
studying non-local cosmological models. Most of the non-local cosmological models explicitly
include a function of the d’Alembert operator, �, and either define a non-local modified grav-
ity [6, 7, 8, 9, 10, 11, 12, 13, 14] or add a non-local scalar field, minimally coupled to gravity [15].

In this paper we consider a modification which includes a function of the �−1 operator. This
modification does not assume the existence of a new dimensional parameter in the action and
the ensuing non-local model has a local scalar-tensor formulation. The most currently studied
example [7, 8, 10, 11, 12, 13, 14] of a model of this kind with de Sitter solutions is characterized
by a function f (�−1R) = f0e(�

−1R)/β , where f0 and β are real parameters. It has been shown in [7]
that a theory of this kind, being consistent with Solar System tests, may actually lead to the known
universe history sequence: inflation, radiation/matter dominance and a dark epoch. Expanding
universe solutions a ∼ tn have been found in [7, 13]. In [10] the ensuing cosmology at the four
basic epochs: radiation dominated, matter dominated, accelerating, and a general scaling has been
studied for non-local models involving, in particular, an exponential form of f (η). An explicit
mechanism to screen the cosmological constant in non-local gravity was discussed in [11, 12, 13].

De Sitter solutions play a very important role in cosmological models, because both inflation
and the late time Universe acceleration can be described as a de Sitter solution with perturbations.
A few de Sitter solutions for this model have been found in [7] and also analyzed in [12]. In [14]
de Sitter solutions have been obtained without any restriction and it has been shown that the model
can have de Sitter solutions only if the function f (�−1R) satisfies a given second order linear
differential equation. The simplest solution of this equation is an exponential function.

The Bianchi I metric can be considered as a minimal generalization of Friedmann–Lemaître–
Robertson–Walker (FLRW) spatially flat metric. Considering the stability of de Sitter solutions
in Bianchi I metric we include anisotropic perturbations in our consideration. For the model with
the exponential function f (�−1R) and nonzero cosmological constant Λ the stability of de Sitter
solutions in the Bianchi I metric has been analysed in [14].

In the case Λ = 0 the stability of the fixed point for the system of equations in terms of Hubble-
normalized variables has been discussed in [7] and further investigated in [8, 14]. In all these papers
the stability of solutions has been analysed only with respect to isotropic perturbations of the initial
conditions, in other words, in the FLRW metric. Here we investigate the stability of de Sitter
solutions at Λ = 0 in the Bianchi I metric, and show that the stability conditions, in the Bianchi I
metric and in the FLRW metric, are the same.
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2. Non-local gravitational models in the Bianchi I metric

Consider the following action for non-local gravity

S =
∫

d4x
√
−g

{
1

2κ2

[
R
(

1+ f
(
�−1R

))
−2Λ

]
+Lmatter

}
, (2.1)

where κ2 ≡ 8π/MPl
2, the Planck mass being MPl = 1.2×1019 GeV. The determinant of the metric

tensor gµν is g, Λ is the cosmological constant, f is a differentiable function, and Lmatter is the
matter Lagrangian. We use the signature (−,+,+,+).

Note that the modified gravity action (2.1) does not include a new dimensional parameter. This
non-local model has a local scalar-tensor formulation. Introducing two scalar fields, η and ξ , we
can rewrite action (2.1) in the following local form:

S =
∫

d4x
√
−g

{
1

2κ2 [R(1+ f (η)−ξ )+ξ�η −2Λ]+Lmatter

}
. (2.2)

By varying the action (2.2) over ξ , we get �η = R. Substituting η =�−1R into action (2.2),
one reobtains action (2.1).

Variation of action (2.2) with respect to η yields �ξ + f ′(η)R = 0, where the prime denotes
derivative with respect to η . Varying action (2.2) with respect to the metric tensor gµν yields

1
2

gµν
[
R(1+ f (η)−ξ )−∂ρξ ∂ ρη −2Λ

]
−Rµν (1+ f (η)−ξ )+

+
1
2
(
∂µξ ∂νη +∂µη∂νξ

)
−
(
gµν�−∇µ∂ν

)
( f (η)−ξ )+κ2Tmatter µν = 0 , (2.3)

where ∇µ is the covariant derivative and Tmatter µν the energy–momentum tensor of matter.
Let us consider the Bianchi I metric with the interval

ds2 = −dt2 +a2
1(t)dx2

1 +a2
2(t)dx2

2 +a2
3(t)dx2

3. (2.4)

The Bianchi universe models are spatially homogeneous anisotropic cosmological models. Inter-
preting the solutions of the Friedmann equations as isotropic solutions in the Bianchi I metric, we
include anisotropic perturbations in our consideration. A similar stability analysis has been made
for cosmological models with scalar fields and phantom scalar fields in [16]. It is convenient to
express ai in terms of new variables a and βi (we use the notation of [17]):

ai(t) = a(t)eβi(t). (2.5)

Imposing the constraint β1(t)+β2(t)+β3(t) = 0, at any t, one has the following relations

a(t) = [a1(t)a2(t)a3(t)]
1/3 , Hi ≡

ȧi

ai
= H + β̇i, and H ≡ ȧ

a
=

1
3
(H1 +H2 +H3). (2.6)

In the case of the FLRW spatially flat metric we have a1 = a2 = a3 = a, all βi = 0, and H is the
Hubble parameter. Following [17], we introduce the shear

σ2 ≡ β̇ 2
1 + β̇ 2

2 + β̇ 2
3 . (2.7)
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In the Bianchi I metric R = 12H2 +6Ḣ +σ 2. The equations of motion for the scalar fields are
as follows:

η̈ = −3Hη̇ −12H2 −6Ḣ −σ2. (2.8)

ξ̈ = −3Hξ̇ +
(
12H2 +6Ḣ +σ 2) f ′(η), (2.9)

For a perfect matter fluid, we have Tmatter00 = ρm and Tmatter i j = Pmgi j. The equation of state is

ρ̇m = −3H(Pm +ρm). (2.10)

The Einstein equations have the form:[
σ2

2
−3H2

]
(1+ϕ −ξ )+

1
2

ξ̇ η̇ −3H
(

ϕ̇ − ξ̇
)
+Λ+κ2ρm = 0 , (2.11)

[
2Ḣ +3H2 +

σ 2

2
− β̈ j −3Hβ̇ j

]
(1+ϕ −ξ )+

1
2

ξ̇ η̇ + ϕ̈ − ξ̈ +(2H − β̇ j)(ϕ̇ − ξ̇ ) = Λ−κ2Pm,

(2.12)
where ϕ ≡ f (η). Summing Eqs. (2.12) for j = 1,2,3, we get[

2Ḣ +3H2 +
σ 2

2

]
(1+ϕ −ξ )+

1
2

ξ̇ η̇ + ϕ̈ − ξ̈ +2H
(

ϕ̇ − ξ̇
)
= Λ−κ2Pm. (2.13)

From equations (2.12) it is easy to get[
β̈ j +3Hβ̇ j

]
(1+ϕ −ξ )+ β̇ j

(
ϕ̇ − ξ̇

)
= 0, (2.14)[

d
dt

(
σ 2)+6Hσ2

]
(1+ϕ −ξ )+2σ2

(
ϕ̇ − ξ̇

)
= 0. (2.15)

The functions H(t), σ2(t), ξ (t), η(t), and ρm(t) can be obtained from equations (2.8)–(2.11),
(2.13) and (2.15). If H(t) and the scalar fields are known, then β j(t) can be found from (2.14).

Following [12], we consider matter with a state parameter wm ≡ Pm/ρm which is a constant
not equal to −1. Thus, Eq. (2.10) has the following general solution

ρm = ρ0 e−3(1+wm)H0t , (2.16)

where ρ0 is an arbitrary constant.
It has been shown in [14] that the model (2.2) can has de Sitter solutions for the following

forms of the function f :

f1(η) =
C2

4
eη/2 +C3e3η/2 +C4 −

κ2ρ0

3(1+3wm)H2
0

e3(wm+1)η/4 , for wm ̸= − 1
3
, (2.17)

f̃1(η) =
C2

4
eη/2 +C3e3η/2 +C4 +

κ2ρ0

4H2
0

(
1− 1

3
η
)

eη/2, for wm = − 1
3
, (2.18)

where C2, C3, and C4 are arbitrary constants. One can see that the key ingredient in all of these
functions fi(η) is an exponent function. For the models with f (η) equal to an exponential function
or a sum of exponential functions, particular de Sitter solutions have been found in [7, 12]. In
the most general form, de Sitter solutions for the case of the exponential function f (η) have been
obtained in [14].
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3. De Sitter solutions and their stability

Let us consider the action (2.2), with

f (η) = f0eη/β , (3.1)

where f0 and β are real constants. This form of f (η) is the simplest function which belongs to the
set of functions described by (2.17). De Sitter solutions with a constant nonzero H = H0 have the
following expression [14]

η(t) = −4H0(t − t0), (3.2)

ξ (t) = − 3 f0β
3β −4

e−
4H0(t−t0)

β +
c0

3H0
e−3H0(t−t0)−ξ0, at β ̸= 4/3, (3.3)

ξ (t) = − f0(c0 +3H0(t − t0))e−3H0(t−t0)−ξ0, at β = 4/3, (3.4)

where c0 and t0 are arbitrary constants,

ξ0 = −1− Λ
3H2

0
, ρ0 =

6(β −2)H2
0 f0

κ2β
, wm = −1+

4
3β

. (3.5)

The case β = 2 corresponds to ρ0 = 0. Thus, the model with exponential f (η) has no de
Sitter solution if we add matter with wm =−1/3. The type of function f (η), which can have such
solutions, is given by (2.18). The case β = 4/3 corresponds to dark matter, because wm = 0.

Using (2.8) and (2.9), we get equation (2.13) in the form

2
[

1+
β −6

β
ϕ −ξ

]
Ḣ = 4H

[
ϕη̇
β

− ξ̇
]
− ϕη̇2

β 2 +
24
β

H2ϕ − ξ̇ η̇ − 4κ2

3β
ρm −

[
1+

β −2
β

ϕ −ξ
]

σ 2.

(3.6)
For all H0 > 0 and β > 0,

ϕ → 0, ξ → −ξ0, at t →+∞. (3.7)

Therefore, the coefficient of Ḣ in (3.6) tends to Λ/(3H2
0 ). In the case of nonzero Λ, the stability of

de Sitter solutions at late times can be analysed without using of the Hubble-normalized variables.
It has been found in [14] that for H0 > 0 and β > 0, the de Sitter solutions are stable with respect
to fluctuations of the initial conditions in the Bianchi I metric at any nonzero value of Λ.

Here we consider the stability of de Sitter solutions with respect to fluctuations of the initial
conditions in the Bianchi I metric, in the case Λ = 0. To analyze the stability of the de Sitter
solutions at Λ = 0, we transform the system of equations using the Hubble-normalized variables

X = − η̇
4H

, W =
ξ̇

6H f
, Y =

1−ξ
3 f

, Z =
κ2ρm

3H2 f
, K =

σ 2

2H2 (3.8)

and the independent variable, N,
d

dN
≡ a

d
da

=
1
H

d
dt

. (3.9)
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The use of these variables makes the equation of motion dimensionless. Eqs. (2.8), (2.9), (2.10),
and Eq. (2.15) are equivalent to the following ones, in terms of the new variables,

dX
dN

= 3(1−X)+
1
H

(
3
2
−X

)
dH
dN

+
K
2
, (3.10)

dW
dN

=
2
β
(1+2WX)−3W +

1
H

(
1
β
−W

)
dH
dN

+
K
3β

, (3.11)

dZ
dN

=
4
β
(X −1)Z −2

Z
H

dH
dN

, (3.12)(
dK
dN

+
2K
H

dH
dN

+6K
)
(3Y +1) = 4K

(
2X
β

+3W
)
. (3.13)

To get the full system of the first order differential equations we need to get one for dH
dN and to

eliminate Y . To do this, we use Eq. (2.11), which can be written in terms of the new variables as

Y = − 1
3
+

2β (2X −3)W −4X −βZ
β (K −3)

. (3.14)

Differentiating (3.14), substituting (3.10)–(3.13), and using

dY
dN

= 2
(

2XY
β

−W
)
=

4X
3β 2(3−K)

(
β (K −3)+6β (3−2X)W +12X +3βZ

)
−2W, (3.15)

one gets (
2(2X −3)(βW −1)−βZ −2K

) 1
H

dH
dN

=
8(3−K)X2

3β
+

+
4
3
(6−9βW +K)X +2Z +12(βW −1) +

(
2− 2

3
Z +(2W +Z)β

)
K +

2
3

K2, (3.16)

In terms of the new variables system (3.10)–(3.13), (3.16) has the following fixed point

H = H0, X0 = 1, Z0 =
2(β −2)

β
, W0 =

2
3β −4

, K0 = 0, (3.17)

which corresponds to de Sitter solution for β ̸= 4/3, with c0 = 0. In the case of an arbitrary c0, for
the de Sitter solution, we get

W =
2

3β −4
− c0

6H0 f0
e−(3−4/β )(N−N0), (3.18)

where N0 = H0t0. The function W tends to infinity at large N for β < 4/3 and lim
N→∞

W = W0 at

β > 4/3. So, the fixed point can be stable only at β > 4/3. Under this condition all de Sitter
solutions tend to a fixed point, what means that, for any ε > 0, there exists a number, N1, such that
the de Sitter solution is in the ε/2 neighborhood of the fixed point, for all N > N1. Therefore, the
stability of the fixed point guarantees the stability of all de Sitter solutions.

For β = 4/3 the function W , corresponding to de Sitter solutions, depends on N for any value
of parameters. Thus, this choice of dimensionless variable is not suitable to analyse stability of the
de Sitter solutions for β = 4/3. Here we will deal with the case β ̸= 4/3, only.

6
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Let us consider perturbations in the neighborhood of (3.17):

X = 1+ εx1, Z = Z0(1+ εz1), W =W0(1+ εw1), H = H0(1+ εh1), K = εk1. (3.19)

To first order in ε , after some work we obtain the system of linear equations:

dx1

dN
= −3x1 +

1
2

dh1

dN
+

1
2

k1,
dz1

dN
=

4
β

x1 −2
dh1

dN
, (3.20)

dw1

dN
=

4
β

x1 +
β −4

2β
dh1

dN
+

(
4
β
−3

)
w1 +

3β −4
6β

k1, (3.21)

dh1

dN
=

8(4−β )
β (3β 2 −11β +12)

x1 −
2(3β −4)(β −2)

β (3β 2 −11β +12)
z1 −

3β 2 −5β +4
3β 2 −11β +12

k1, (3.22)

dk1

dN
=

(
8
β
−6

)
k1. (3.23)

Solving (3.23), we get
k1(N) = b1e−(6−8/β )N , (3.24)

where b1 is an arbitrary constant and k1 tends to zero for N → ∞, if and only if β > 4/3.
Substituting k1 and (3.22) into (3.20), we get a system of two inhomogeneous differential

equations. As known, the general solution of this system is a sum of the general solution of the
corresponding homogeneous system and a particular solution of inhomogeneous one. The homoge-
neous system corresponds to the FLRW metric (the case K = 0) and those general solution, which
has been obtained in [14], is bounded and tends to zero for N → ∞, if 4/3 < β 6 2. For any β from
this interval a particular solution of the inhomogeneous system tends to zero as well, because k1

tends to zero at β > 4/3. Therefore, the perturbations x1 and z1 decrease provided 4/3 < β < 2.
Substituting x1(N) and z1(N) into Eqs. (3.21) and (3.22) we get that h1(N) and w1(N) decrease
as well. Note that h1(N) has a part, H1, which does not depend on N and, therefore, it can be
considered as part of H0. This result corresponds to the fact that, for Λ = 0, the value of H0 can
be selected arbitrarily; thus, one can choose H̃0 = H0 +H1 instead of H0. We can summarize the
above saying that the de Sitter solutions are stable with respect to perturbations of the Bianchi I
metric, in the case 4/3 < β 6 2. If f0 > 0, then the stable de Sitter solution corresponds to ρ0 6 0.

4. Conclusions

We have here investigated de Sitter solutions in the non-local gravity model described by the
action (2.1) (see [7]). We have used the local formulation of the model (2.2), which includes two
scalar fields. We have specifically considered the case of the exponential function f (η), which
is the simplest and most studied case, corresponding to the model (2.2), which admits de Sitter
solutions.

In [14] we have discussed the stability of de Sitter solutions in the Bianchi I metrics and
obtained that, for H0 > 0 and β > 0, de Sitter solutions are stable, for all nonzero values of Λ.
Here we have proved that in the case Λ = 0 de Sitter solutions are stable for H0 > 0 and 4/3 <

β 6 2. Thus, our conclusion is that de Sitter solutions, which are stable with respect to isotropic
perturbations, are also stable with respect to anisotropic perturbations of the Bianchi I metric.
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