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Figure 1: Summary ofas(Mz) in MS obtained from several methods. Those values refer to [2fecent
publications. The published world average presented iis[Rlustrated as blue dashed line (central value)
and blue band (uncertainty). The red dashed line and banuteléme result except for lattice calculation.
The green squares denote the results in an analysis usergelanf deep-inelastic scattering data and HERA
data quoted in [3]. Those results do not contain theoretineértainties. The recent results from OPAL [4]
(the green diamonds) using NNLO and NNLO+NNLA calculatiangd from LEP [5] and Tevatron [6] (the
green upper-triangles) are also shown.

1. Introduction

Strong coupling constants is one of the most important fundamental parameter of quantu
chromodynamics (QCD). QCD is successful to describe thangtdynamics related to quark-
gluon interaction with just a few input parametemg,and quark mass. Indeed this theory provides
highly consistent results with high-energy experimentabsurements using perturbative and non-
perturbative calculation such as lattice QCD or operatodpct expansion (OPE). High precision
determination ofog plays an important role in theoretical prediction of theriard Model (SM)
and the new physics search at extremely high-energy expetéin Recently Higgs production
experiment at LHC [1] requires less than 0.5% precisioagtfo keep the accuracy similar to the
electroweak contribution since 7%—8% uncertaities of glfusion diagram is dominated from the
uncertainties ofrg and parton distribution function for 125 GeV Higgs mass.

The current world average ofs has been published in 2009 [2] as{Mz) = 0.1135+ 0.0007
which is evaluated by combination of the measurement@f eannihilation, T decay and lattice
QCD calculation (see Figure 1). Note that the central vafuss@ertainly leads to the preciseness
of lattice calculation in which its accuracy has alreadycheal to the five-digit precision, and
indeed if lattice result is made excluded from it, the cdntadue shifts about 30% and such error
increases by 50% [2].

To obtainas, one needs an ingredient of dimensionless quantity whigmdsvn as the per-
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turbative expansion is converged at sufficiently high epemaleQ where is enough controlled by
the power raw(Agcp/Q) contributions. Conventionallfg denotes such quantity corresponding
to the physical observablefor example in the case afdecayR; is chosen to be hadronic branch-
ing ratio and also in the case efe~ annihilationR; is chosen to be thejet production cross
section divided by total cross section. In these cases th@ppate energy scale for convergence
of perturbative expansion depends on the observableRFahich provides the precise determi-
nation of as from experimental measurement, the energy sGale M; = 1.78 GeV corresponds
to as(M;) ~ 0.33 where the unknown non-perturbative effect from the estnbased on OPE at
Q = M; may be about 7%, and when taking@o= Mz about three factor of such uncertainty de-
creases because relative error of running coupling constanbe described dsos/as ~ as. In
this case theoretical uncertainties can be rather effigisnppressed by a few % level than other
high energy experiments (in which about 5% theoretical tiaggies remain).

In lattice QCD there are many choices Rfas short distance observable. The energy scale
we can choose is allowed for broad range bew: ¢ (11/a) by the lattice cut-offa~! which is
provided by the simulation parametgrregarding the bare gauge coupling. Presently thanks to
the great development of computational algorithm and eqgeig (supercomputer) lattice QCD
simulation makes progress into one of the most reliableréimal calculation of QCD based on
the first principles. Full QCD simulation including sea dusaof degenerate light (up-down) flavor
plus strange has been established, and now the new sinmulatib sea charm quark becomes
routine. As a consequence lattice calculationsrghas reached toward five-digit precision area,
which is a few % uncertainty compared with estimate fromecay measurement.

In this proceedings | first show the recent work in JLQCD dmdiation adopting Adler func-
tion to dimensionless quantif in lattice QCD, and next | briefly explain the other latticerk®
and compare these results.

2. Adler function and vacuum polarization function

Conventionally Adler functioD is defined by the derivative of hadronic vacuum polarization
function (VPFs)1;(Q?) with respect to the Euclidean momentum squ@fe

dny(Q)
2y ~9h
D(Q*) = - 2.1)
which has been known as scheme-independent quantity atdduby the perturbation at NNLO
(0(ad)) [7, 8] and NLO (¢(ad)) [9]. The ingredient; is given by the spin-expansion of non-
singlet vector or axial-vector current correlator as

<JﬁJ\?>(Q) = 5ab (5IJVQ2_ QHQV)HSBV7A_ QHQVHSOZ)A] (22)

where the superposition indicates the corresponding dpétate, for example’lgl) is associated
with p(J =V) anda;(J = A) meson pole]‘lgo) is associated withrt,ap poles, at low energy re-
gion. At high energy region, where is equivalent to deep i@aah region, we can reproduce the
perturbative formula fof1; from Adler functionD when the renormalization scheme is chosen. In
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general operator production expansion (OPE) desciibess

rﬁz _
I-IV+A‘OPE(Q27 aS) = C+C0(Q27 I«l27 aS) +C>'/n+A(Q27 “2’ as)% + Z C(\:qu“'A(QZ’ as) <ngjq>
g=u,d,s

+0(Q7 (2.3)

((as/m)GG)
o
with analytic formulaCo from MSscheme at’(a?) [10] and'(ad) [11, 12],Cr, from MSscheme

ato(a2) [13], Cx_gca is Wilson coefficient of non-perturbative quantity for optar condensate
(X) [14]. c denotes the scheme-dependent constant which vanishesenfiaction.

+ Coo(Q?,as)

3. Strong coupling constant from VPFs on the lattice

Here | would like to show the recent results using the Adlercfion computed by VPFs in
lattice QCD with overlap fermion.

3.1 Lattice formula in the exact chiral fermion

VPFs can be defined as the same way as continuum theory (2iBedattice if vector or
axial-vector current is satisfied with Ward-Takahashi (Vid@ntity. If not, we should take into
account the lattice artifact due to violation of currentsenvation. In overlap fermion formulation,
which is defined as lattice fermion with the exact chiral syetmyon the lattice, there is an exact
definition of conserved current:

V(%) Zq Ky (W Zx)a(2), AT () =Y aw)tKyu(w,ZX)[§0)(2), (3.1)
W,Z

whereK (w, z|x) is defined as the kernel of conserved current whose exptigitila is described
in [15, 16]. The current-current correlator used in bothsswed ones are computationally hard
to construct because of non-locality of the inversengfamong the two operator, unless all-to-
all quark propagator is employed. However the mixing catal with local-conserved current,
(5 ()30 (y)) with J3"°°(x) = G2y, q, does not matter to computational construction on the
lattice. This current-current correlator is satisfied Vil identity for one side,

> QuVE W) Q=0 Y QuAITA™)(Q —2my(PPAY ) (Q =0, (3.2)
0 0

wherea@u = sin(aQy) is momentum definition corresponding to the backward déviv@perator
d;*. The second term of AWT in (3.2) represents the correlatiorction of the pseudo-scalar
density operatoP?(x) = q(x)t®y5(1— Doy/mo)q(x) and the local axial-vector curreJi@\f}'OC A
possible term arising from the axial transformatlonJEJ'IE’C ) (J =V or A) vanishes when we take
the vacuum expectation value, since the vacuum has a)efch"ange symmetry while the index
remains inJ2'°(y).

The vector and axial-vector VPFs are now given by [16]

(FR)Q) = 6* (0@ - QNP (Q - QAN (Q +8% Q). (3:3)

4
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Here,l‘l\(,o)(Q) vanishes because of the conservatioVpf', while I'IEP(Q) represents a remnant
due to PCAC:

NP(Q) = —2my(P2AZ™%) (Q)/(§*Gy). (3.4)

(Repeated indices's are not summed.) The transverse MW(Q) can be extracted as

N (Q) = (33%33°%(Q) /(& — 0uby), (3.5)

(repeated indicegl’'s are not summed) if one ignores the additional teﬁf;ra(Q), which reflects
the violation of the current conservation of the local cotr&'°. Since the current conservation
is recovered in the continuum limit, this term can be expdridgerms of smalbQ,, as

Bu@ =3 (3wy &~ T ) B Fm(Q), (3.6)
1 2

m,n=

where R, denotes the scalar function depends on the imdgxand momentunQ. It satisfies
the conditiony ,, QuA%, (Q) = 0 coming from the WT identity fod7®". Fortunately the numerical
investigation suggests the corresponding lattice attifaiiny contribution to VPFs [16, 18] rather

than the case when local-local current is used [19].

3.2 as from VPFs

OPE formula in Eq.(2.2) is applicable to use as a fitting fiomctvith data of VPFs extracted
from current-current correlator in Eq.(3.4) and Eq.(3ddring theAfw. Since the value of the
operator condensate of gluon can not be independentlyndieked from direct lattice calculation
due to renormalon ambiguity [20], we treat it as a free patames well ax, otherwise the quark
condensate is deterministic in lattice QCD unless the tliyenmetry does not broken on the
lattice. The coupling constant is given Bys in the perturbative expansion up &(ad) [21, 22].
Thus three free parameters, (GG), A\yg) are required in this fitting when overlap fermion is
adopted.

JLQCD collaboration has curried out the calculation witkerap fermion in dynamical light
quark (degenerate up-down) and strange quark in tAeB8 lattice ata—! = 1.83(1) GeV [16].
Figure 2 shows thax? fitting has well quality of describing lattice VPFs with OP&rhula as a
function of(j2 in a whole quark mass. Actually after dealing with corradafie between different
momenta the value gf?/dof is 1.7 with carefully constrained momentum range.

Mainly there are two sources possibly including as syst@neator into this calculation. The
details refer to description in [16].

e At small (aQ)?, truncation effect in higher order thafi(Q®) in OPE may be significant.
Figure 3 indicates that in lowaQ)? region from 0.4-0.5 the behavior of higher order operator
can be observed.

e Atlarge (aQ)?, the contribution of\,y in EQ.(3.6) does not ignore. In [16] that is taken into
account by investigation with lattice perturbation (seg.B)i and comparison between data
of u=v andu # v (see Fig.4). The systematic error is conservatively etatutom these
estimate.
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Figure 2: (aQ)? dependence of VPH]ya(Q), at all valence quark massesy = 0.015 (circle), 0025
(square), M35 (diamond), and.050 (triangle), evaluated in overlap fermion using 2+1 ftanol 6% x 64
[16]. Top panel is a result ais = 0.08 while the bottom is atns = 0.10. Solid curves show a fit function
at each quark masses. Filled symbols are the points for wdbach momentum component is equal to or
smaller than 2r/16 in the lattice unit.

After taking account of other systematic uncertainties etemination of lattice spacing, renor-
malization factor (for local current, quark mass) and ptgisinass of. p,, we obtain

al? (Mz) = 0.1181(3)(*14). (3.7)

The main uncertainty is due to large difference of latticacipg from determination usinfy; and
Q mass [23, 16], however this may be reduced as soon as possikle the precise simulation
using more accurate parameter (larger lattice volume steyailable in near future [24].

4. Other lattice calculations of strong coupling constant

Here | will introduce the results of other lattice method. fiviel the brief overview of current
lattice status in the literature [25].
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Figure 4: (Left) (aQ)? dependence of one-loop VFTFFJ:V,A(QZ) in lattice perturbation theory. Dashed
line shows the leading logarithm term plus a constant, wkimhesponds to the continuum perturbation
theory. Solid lines show the function including latticeifatt of O((aQ?)). The shaded band represents an
uncertainty due to the higher order effects. The red dianuemibtes the value at the upper limit of our fit of
VPF. (Right) Difference betweefi$?%Q) andng™(Q) at all valence quark masses, = 0.015 (circles),
0.025 (squares),.035 (diamonds), and.050 (triangles). Top panel of right figure is the resultrgt= 0.08
and the bottom one is img = 0.10.

4.1 From Wilson loop with lattice perturbation

The perturbative expansion of Wilson loops with some kindleop-path shape provides the
value of strong coupling constaay, [26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36] as

~ o = 5 6" (m) o™ ()] (4.1)
=
by the comparison between the light-hand-side which isigeal/from Wilson loop fom x m or
non-planer paths in lattice Monte-Carlo simulation, areright-hand-side in Whicbi(Nf>(n, m) is
given by computation of Feynman diagram in lattice perttida The scaleyy,, is the average
momentum of gluon, and this value has been usually used Inati@ from the one-loop gluon

contribution to Wilson loops [28], however more robust mdare of scale setting incorporating
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Figure 5: (Left) History of theas(5) (Mz) vale from short-distance quantity of Wilson loop on theidzt |
represent the number of dynamical quark flavor used in thet&1Garlo calculation of Wilson loops & .

(Right) 05(5) (Mz) from 22 different Wilson loops determined by HPQCD colladtan [36].

higher order contribution is available in [37], and thus\amtionally in Ref.[33, 35, 36] the no-
tation of this scale is distinguished g%, — d/a. To convert the convention&llS scheme, the
perturbation formula using static-quark potential atdtirder [38] is available

2
ays () = ap (€°Q) |1+ Tag" Xl P+ o((ap ). (@42)
aM(Q) = ol (Q)[1+ a3(1.86— 0.45N; + Xyg) + O(ad)], (4.3)

where the value oKyg has been known as;s ~ 0.95 [31, 32] for quenched QCD.

Since starting in Ref.[26] the procedure of lattice caltiala of as with Wilson loop, the
precision has become higher and higher. We can find the $asnmt§5)(Mz) in Ny = 0 [26, 29],
Nt = 2 [29, 31, 32] andN¢ = 3 [33, 34, 35, 36] (see Fig. 5). The recent result in [36] i€giby

al® (My) = 0.11846), (4.4)

from combining the 22 determinations of coupling constasluated from Wilson loops and
lattice perturbation at NNLOcﬁ3’<)3) plus simultaneous fitting result from different latticeaspg

cf% (see Fig.5).

4.2 From moment of heavy quark current-current correlators

Determination ofas from moment of heavy quark current-current correlator msilsir idea
to determination ofrs from VPFs as explained in section 3.2. Here dimensionlegedient is
defined as

_ t n o 6 2 . .

Go=3 (3) GO 6 =" (am)*(0ljs(%1)is(0,0)0) (4.5)
whereG,, corresponds to coefficient & — 2)/2th order of Taylor series for vacuum polarization
MP(q?), which is defined as[ dx€®™(0|T js5(x) j5(0)|0) = g?MP(q?), around zero external momen-
tum. Conventionally in Ref.[39, 36] they define dimensiasléreduced moment” as the ratio of
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tree level moment:

(G /G4 forn> 6 (4.6)

aMhoeh
in which the denominator is used to be the lowest-order mowidattice perturbation, an[hlf)?))Ieh
is the lowest-order of c-mass, which is related to bare hemark massamg, [39]. Reduced
moment is equivalent to continuum quantities ugt@am,)™ds):

G4/Gﬁl0> forn=4
-
2

ﬁ((aﬂh)mas), (47)

A (g ts(h0), /) 6) O forn > 6
and thereforens andm, () can be evaluated by using the equivalence between latticelaged
R, andg, in continuum perturbation theory at NNLO [40, 10] uprte= 62 and NLO [11, 41, 42]
up ton = 10 (wheren represented in here is equivalent(to— 2) /2th moment). The exponent
will take m=2,4-- -, which depends on the order of moments.

HPQCD collaboration have performed the above proceduraltalkatem, and as using up
to n = 30 [36] in simultaneous fit combined with exact coefficiemd\PLO perturbation theory
and fitting with free parameters, and thus they obtained

R, — { Ga(as(K), 1/mh) /0y forn=4

al® (Mz) = 0.11837), (4.8)
and alsan.(3GeV) = 0.986(6) GeV for Ny = 4 andm,(10GeV) = 3.617(25) for N = 5.

4.3 From step scaling function in Schrodinger functional sheme

ALPHA collaboration [43] have developed the new schemeHerdalculation ofrs from non-
perturbative running coupling constant through stephsggbrocedure. So called “Schrodinger
functional (SF) scheme” is fabricated by the step scalimgtion >(u) of renormalized coupling
constantu = g2, which is given by the derivative of effective action witrspect to the imposed
Dirichlet boundary field parametrized by real valggand v) in temporal direction [44, 45]. In
this procedure scaling the coupling constant follows tleg sicaling function at finite size after
taking the continuum limit:

o(u) = a/IiLrE JZ(uL/a), Z(ul/a) = 0*(2L)| ) (4.9)
where the second equation indicates the new renormaliaguling constang?(2L) obtained at 2
times scale-up from the old renormalized coupling consia(it) at fixed lattice spacing. o(u) is
evaluated by the continuum extrapolation ¥gu, L /a) using several lattice spacing (bare coupling
constants) (see Fig.6). When obtaining theu) from starting maximum scal@max = 1/Lmax
into perturbative region, thA-parameter in SF scheme is given by the exact solution of@all
Symanzik equation

_ G (H) 1 1 b
SF_ 211~/ (20) o1/ (2Do()) _ / J 1.1 b
A\ u(bog® (1)) o exp{ A dX[BSF(X) + % b(z)x} } (4.10)

with p = 2'/Limax In fact, the lattice result of a non-perturbative step isgafunction has been
well consistent with three-loop perturbation theory at kveaupling region (see Fig. 6)35F(x)



Determination of as from lattice QCD Eigo Shintani

6T T T T
% u=3.3340 §
W ] 1.8
! ] {
1 6’ o ALPHA (2005), N=2
1 ’ = PACS-CS (2009), P¢3
. o } a ALPHA (2010), N:4
S i — PT 3 loop ]
g/ - 5 G u-2.4792 2 A
S 3 S14- A
3 - o) E ]
T
1.7319 i //;//
2o — = 1.2+ - —
u=1.5031 /’i/
u=1.1814
u-09783 1 L ///’///
! E 0.02 0.04 0. l)a | 1 | |
(a/L)? 10 1 u 2 3

Figure 6: (Left) Continuum extrapolation of step scaling functibfu, L /a) defined in context starting from
u= 5.5 [45]. (Right)o(u)/u as a function olu obtained from Schrédinger functional schemeNin= 2
[45], Ns = 3 [46] andNs = 4 [47]. The solid lines denote the comparison with the pésdtion at 3 loop
order calculated in [44].

denotes the beta function, whose perturbative form has ke®mn as series of up to 3-loop coef-
ficients in SF schemdyy = (11— 2N¢/3)/(41m)2, by = (102— 38Nt /3) /(4m)*, bSF = (0.4837) —
0.275(5)N¢ + 0.0361(5)N? — 0.001751)N?)/(4m)3 [44]. Note that in this scheme it is necessary
to determine the maximum sitg,ax through the renormalized coupling constagtx = §2(Lmax)
where is above the inverse of hadronic scpqg];gron« Lmax), for instance, associated withyax 7,
Lmax/To [45] or determined lattice spacirafrom hadron mass [46] which has been separately ob-
tained in large scale simulation and therefore it will besstire to determination of lattice spacing.
After conversion intd\%) with perturbative formulaas(S)(Mz) quoted in [46] is given as
al® (Mz) = 0.12059)(*9,), (4.11)

where the first error is estimated by the quadrature of uaicdigs of statistical and systematic
coming from perturbative matching of different flavor, antheywise the second one is due to
lattice spacing uncertainty.

4.4 From vertex function of gluon and ghost interaction

Basically from non-perturbative computation of the twdw,ee-gluon or gluon-ghost vertex
function a5 can be straightforwardly derived as a function of exterhabg momenta. In Ref.[55,
56, 57, 58, 59, 60, 61] we find several attempts of computimexeunction under gauge fixed
configurations with some kinds of flavor of dynamical fermion

5. Summary

Figure 7 shows the summary of recent published reswté@f(Mz) with several schemes in
lattice QCD as explained in the previous sections. It is absiy consistent with each value ob-

10
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tained in different lattice action and scheme. Assuming ttiese results are independent between
each other, the combined vaIueaﬁE)(Mz) is evaluated as

a®¥ (Mz) = 0.1186*7), (5.1)

without correlation among them. Its central value is exadly agreement with world average
within 1 ¢ error, and its accuracy is also compatible with that. Topeitke further high precision
as below 0.5% accuracy, the control of the following uncettias has already become routine:

e Perturbative matching whet® = m. and m,: To take the coupling constant obtained in
Nt = 2+ 1 (or Ny = 3) dynamical simulation intdQ = Mg, it is necessary to incorpo-
rate contamination of vacuum polarization of heavy quatk imunning coupling constant
corresponding threshold near its renormalized megsof m,). Ordinarily it is useful to
match running coupling constant between different flavaNas- 3 — 4(4 — 5) at thresh-
old Q = m¢(mg) (my(my)) using decoupling relation in perturbation formula up 8L
o(al) [48, 49, 50], however there remains additional effect capfiom higher-order trun-
cation. Basically implementation of lattice Monte-Carimslation including dynamical
charm quark (moreover bottom quark if we can control largckartifacto’ (amy)) will be
the most rigorous treatment of heavy quark effect withoyedeling on perturbative expan-
sion. ag including charm see quark effect will be available from thessal on-going projects
[51, 52, 53].

e Uncertainty of lattice spacing: Since the ingredientRois dimensionless quantity, calcu-
lation of ag at proper scale on the lattice is nothing to do with the deitgaition of lattice
spacing, however in order to compare other results at diftescale or perform the perturba-
tive matching at particular scale it becomes significante THitice spacing specified in the
bare coupling constant is determined from a physical olédeviike pion decay constant,
omega baryon mass or heavy quark potential. Although inntlzisner the accuracy of such
physical observable obtained in the same parameter spacgdstant, there are slightly
large systematic division among different physical inpukhis issue will be overcome by
large scale simulation close to realistic pion massl40 MeV) and physical volume-(4
fm?3) in the near future.

Presently the determination af; in lattice QCD has been established, and the prospect afefutu
lattice calculation may lead to further precision comgatibith electroweak coupling constant.
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