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1. Introduction

Monte Carlo methods for lattice field theories with massless fermions in three or more di-
mensions continue to pose a variety of challenges. For example, the popularHybrid Monte Carlo
(HMC) method encounters many difficulties. Sometimes the method encounters sign problems,
while in other cases small eigenvalues of the fermion matrix lead to severe singularities. For this
reason most practical calculations have always relied on extrapolations tothe massless limit. Stud-
ies in Quantum Chromodynamics have shown that reliable extrapolations require calculations at
many small fermion masses [1]. As far as we know Monte Carlo calculations onlarge lattices with
exactly massless fermions have never been performed so far with traditional Monte Carlo methods
including the HMC.

Recently, an alternative Monte Carlo method called the fermion bag approachwas proposed to
solve some four-fermion lattice field theories with exactly massless fermions [2]. It was shown that
the method is extremely efficient at strong couplings where traditional Monte Carlo methods fail.
Here we argue that the method is also quite general and can be applied to a variety of problems and
in addition, contains an interesting strong-weak coupling duality which makes the method efficient
even at weak couplings. The efficiency is due to the fact that the required effort to perform a single
local update scales like the square of the number of fermion degrees of freedom inside a bag instead
of the space-time volume. Interestingly, the bag size is a small fraction of the thermodynamic
volume at both strong and weak couplings. In the massless lattice Thirring model which we study
here as a first application, the fermion bags typically contain only an eighth ofthe total degrees of
freedom even at the quantum critical point. Due to this feature, for the first time we are able solve
a three dimensional lattice field theory containing exactly massless fermions close to an interesting
quantum critical point on lattices as large as 403 with modest computing resources. Through a
careful finite size scaling analysis we are able to extract the critical exponents accurately at the
quantum critical point in this model.

2. The Fermion Bag Idea

The idea behind the fermion bag is to identify fermion degrees of freedom that cause sign
problems and collect them in a bag and sum only over them. This is in contrast totraditional
approaches where all fermion degrees of freedom in the entire thermodynamic volume are summed
over in order to solve the sign problem. In some four-fermion models, the degrees of freedom
inside a fermion bag often involve only a small fraction of the total number of degrees of freedom
in the entire thermodynamic volume and can be summed up quickly yielding a positiveweight.
This makes the fermion bag approach very powerful. It is an extension ofthe meron cluster idea
proposed some time ago [3].

In order to illustrate the idea consider models formulated withn tastes of massless staggered
fermions. These models contain 2n Grassmann variables per site which will be denoted asψi(x)
andψ i(x) wherei = 1,2, ..n represent taste indices andx denotes the space time lattice point. LetD
be theV ×V free staggered Dirac matrix whose matrix elements are denoted asDxy. The properties
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strong coupling fermion bags

Interaction Bonds

Interaction bonds

Weak coupling fermion bag

Figure 1: An illustration of a “fermion-bag” configuration at strong couplings (left) and weak couplings
(right). The interaction sites are represented through sold bonds and the fermion bags are represented through
the shaded region. At strong couplings the fermion bag are made up of free sites and breaks up into many
disconnected pieces as seen in the left figure, while at weak couplings the bag contains interaction sites.

of D are such that anyk-point correlation function of chiral condensates

Ci(x1, ...,xk) =
∫

[dψdψ ]exp
(

∑
x,y

ψ i(x) Dxy ψi(y)
)

ψ i(x1)ψi(x1) ... ψ i(xk)ψi(xk) (2.1)

involving the tastei is always positive. Using Wick contractions it is easy to prove that

Ci(x1, ..,xk) = Det(D) Det(G[{x}]) (2.2)

whereG[{x}] is the k × k matrix of propagators between thek sitesxi, i = 1, ..,k whose matrix
elements areGxi,x j = D−1

xi,x j
. It is also possible to argue that [2],

Ci(x1, ..,xk) = Det(W [{x}]) (2.3)

where the matrixW [{x}] is the same as the matrixD except that that the sites{x}≡ {xi, i= 1,2, ..k}
are dropped from the matrix. Thus,W is a(V − k)× (V − k) matrix. The identity

Det(D) Det(G[{x}]) = Det(W [{x}]) (2.4)

is the basis behind the weak coupling-strong coupling duality we mentioned in theprevious section.
Now consider a generic four fermion lattice field theory action involvingn massless staggered

fermions given by

S =−∑
x,y,i

ψ i(x) Dxyψi(y)− ∑
〈xy〉

∑
i, j

Ui, j,〈xy〉ψ i(x)ψi(x)ψ j(y)ψ j(y) (2.5)

where〈xy〉 refers to some well defined set of neighboring lattice sites. Further we will assume that
all the couplingsUi, j,〈xy〉 are non-negative real constants. The partition function of the model

Z =
∫

[dψdψ ] e−S (2.6)
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can be expanded in powers of the couplingsUi, j,〈xy〉 and each term in the expansion consists of
a product of correlation functions of the typeCi(x1, ...,xk) introduced above. Mathematically the
expansion looks like

Z = ∑
[{x}]

{[U ]}p
n

∏
i=1

Ci(x1, ...,xki) (2.7)

where{[U ]}p refers to some generic power of the coupling andki, i = 1,2, ..n refers to the number
interaction vertices for each taste. Note that on a finite lattice the expansion is avery high order
polynomial and so no convergence issues arise.

An intuitive physical picture emerges from the above expansion of the partition function. Since
the ki interaction sites contain bothψi andψ i, fermions are already paired on these sites and do
not cause sign problems1. On the other hand, unpaired fermions that hop freely on the remaining
sites can indeed cause sign problems. The free sites are collectively referred to as a fermion bag.
The summation of all fermion world lines inside the bag should be a determinant ofa (V − ki)×
(V − ki) matrix. IndeedCi(x1,x2, ..,xk) = Det(W [{x}]). The determinant can be evaluated easily
if (V − ki) is small, which naturally occurs at strong couplings. Hence we refer to these bags as
strong coupling fermion bags. It was shown in [2] that at strong couplings a fermion bag splits
into many small disconnected pieces making things even simpler. The left figureof Fig. 1 gives
an illustration of the disconnected pieces of a fermion bag at strong couplings. The solid bonds
represent interaction sites while the sites in the shaded regions are free sites and form the fermion
bag. The arrows inside the shaded regions is an illustration of free fermionworld lines inside the
bag.

Clearly at weak couplings the number of free sites grows enormously. Thus, the definition
of a fermion bag as a set of free sites, which was natural at strong couplings loses its charm at
weak couplings. However, thanks to a duality we can construct the fermionbag differently. At
weak couplings we can view the interactions as the unpaired fermionic degrees of freedom that
cause fluctuations over the paired fermionic free vacuum as they hop from one interaction site to
another. The effort to compute these fermionic fluctuations should only grow as the determinant
of a ki × ki matrix. The duality relation of Eq.(2.4) shows thatCi(x1,x2, ..,xk) = Det(W [{x}]) =
Det(D) Det(G[{x}]) where the fluctuation matrixG[{x}] is indeed aki × ki matrix. The right
figure of Fig.1 gives an illustration of a weak coupling fermion bag. The solidbonds again represent
interaction sites which form the fermion bag. Fermions hop from one interaction site to another
through the free fermion propagator. One set of hopping is shown by arrows in the figure.

We must acknowledge that the weak coupling fermion bag idea is exactly equivalent to the
idea of summing over all Feynman diagrams and was introduced earlier in the framework of dia-
grammatic determinantal Monte Carlo methods. For a review please see Ref. [4]. Indeed the sum
over all Wick contractions at the given order in perturbation theory is simplyDet(G[{x}]). On
the other hand, we think the fermion bag approach as a more natural interpretation at least in the
context of lattice field theories since it uncovers the powerful concept of duality discussed above
and shows that the approach is efficient both at weak and strong couplings.

The fermion bag approach is rather general and is equally applicable to non-relativistic fermions
and models with Wilson fermions. However, sometimes it is necessary to introduce unconventional

1Any remaining sign problem would also be present in a bosonic field theory.
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interactions like eight fermion interactions. In some models, the weight of a fermion bag is no
longer a determinant but involves new mathematical structures like fermionants[5]. These are very
similar to determinants, and may be exponentially difficult to compute [6]. For these models, the
fermion bag approach is not practical.

3. Massless Thirring Model

As a first application of the fermion bag approach we have studied the threedimensional
massless lattice Thirring model. It is a lattice field theory containing massless fermions and an
interesting quantum critical point. Variants of this model have been used recently to describe the
critical points associated with Graphene [7]. The model is constructed with two Grassmann valued
fieldsψ(x) andψ(x) on each sitex of a cubic lattice. The lattice action is given by

S =−∑
x,y

ψ(x) Dxy ψ(y)−U ∑
〈xy〉

ψ(x)ψ(x) ψ(y)ψ(y). (3.1)

Here〈xy〉 refers to the set of nearest neighbor sites across a bond. We use anti-periodic bound-
ary conditions in all the three directions. The four fermion couplingU generates the current-
current coupling of the Thirring model in the continuum. The lattice model is invariant under a
U f (1)×Uχ(1) symmetry, whereU f (1) is the fermion number symmetry andUχ(1) is the chiral
symmetry. When the couplingU is small the model containsN f = 2 flavors of massless four-
component Dirac fermions at long distances due to fermion doubling. At largeU the chiral sym-
metry breaks spontaneously and generates a single massless Goldstone boson while the fermions
become massive. There is a quantum critical pointUc which separates the phase with massless
fermions from the phase with massless bosons.

The model has been studied earlier using mean field techniques [8], and conventional Monte
Carlo methods [9, 10, 11, 12]. In particular properties of the quantum critical point have been
computed. However, all previous work was done in the presence of a fermion mass and on lattice
sizes which are not very big compared to the correlation lengths introduceddue to the presence of a
fermion mass. Thus, the analysis may contain uncontrolled systematic errors.A fresh Monte Carlo
method which works directly in the massless limit should be useful. This is what weaccomplish
here using the fermion bag approach.

The fermion bag approach for the model was first developed in [2]. However, in the previous
study only strong coupling bags were used since the concept of duality was not appreciated. Here
we repeat the study with weak coupling bags and are able to push the study tolarger lattice sizes.
In the fermion bag approach the partition function of the model in Eq.(3.1) canbe rewritten as

Z = ∑
[n]

UNbDet(W [n]) (3.2)

where [n] refers to the configuration of interaction bondsn〈xy〉 = 0,1 andNb refers to the total
number of bonds. For a given configuration[n], the free sites form the strong coupling fermion bag
(see the left figure in Fig. 1). However this representation of the partition function is not useful
whenNb is a small fraction of the volume. For example, at the quantum critical pointNb is about
an eighth of the lattice volume. On the other hand, one can use the duality relation

Det(W [n]) = Det(D)[Det2(G[n])] (3.3)
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to simplify the computation whenNb is small. HereD is the free staggered fermion matrix on the
whole lattice andG[n] is theNb ×Nb free fermion propagator matrix between even lattice sites to
the odd lattice sites of the bonds. This representation is equivalent to a redefinition of the fermion
bag as the set of interaction sites (see the right figure of Fig. 1).

4. Observables

In order to uncover the properties of the quantum critical point we have measured four observ-
ables:

1. The simplest is the average number of bonds〈Nb〉. Fluctuations in this observable allow us
to monitor equilibration and autocorrelation times easily.

2. Since we work with exactly massless fermions the chiral condensate will always be zero.
However, the chiral condensate susceptibility is nonzero. It is defined as

χ =
1

2L3 ∑
x,y
〈ψxψxψyψy〉. (4.1)

We expectχ to scale asL2−η at the critical point. A related quantity is the bosonic two-point
function:

CB(|x− y|) = 〈ψxψxψyψy〉 (4.2)

We will define the ratioCB(L/2−1)/CB(1) as a useful way to track autocorrelations.

3. Another useful observable that measures the onset of chiral symmetry breaking is the chiral
winding susceptibility〈q2

χ〉. If we define the conserved chiral charge passing through the
surfaceS perpendicular to the directionα as

(qχ)α = ∑
x∈S

εx ηx,α (D−1)x,x+α + ∑
x∈S

2εx, (4.3)

whereεx = (1)x1+x2+x3 is the parity of the site x, then〈q2
χ〉= 〈1

3 ∑α(q
2
χ)α〉, is expected to be

independent ofL at the critical point. This allows us to determine the critical point accurately.

4. Since one of the novel features of the current quantum critical pointis the presence of mass-
less fermions at the critical point, the fermion two-point correlation function isexpected to
show non-trivial scaling. Hence we define

CF(d) =
1
3

3

∑
α=1

〈ψ̄xψx+dα̂〉 (4.4)

wherex belongs to a site withε(x) = 1 andα̂ is a unit vector along each of the three direc-
tions. We compute the ratioR f =CF(L/2−1)/CF(1) which is expected to scale asL−(2+ηψ )

at the critical point.

6
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odd fermion bags

Figure 2: An illustration of a zero weight configuration due to the presence of a fermion bag with an odd
number of free sites. The staggered fermion Dirac operator defined on an odd number of lattice sites has an
exact zero mode

5. The Algorithm

We now discuss the details of the Monte Carlo algorithm we have used to solve the model. An
important technical problem is that some observables likeχ get contributions from configurations
that do not contribute to the partition function. For example, the configurationillustrated in Fig. 2
contributes toχ, but has zero weight in the partition function. This is because, in the massless
limit any strong coupling fermion bag with an odd number of free sites has zeroweight. However,
introducing aψ(x)ψ(x) source in each of the two odd bags makes the number of free sites even and
thereby changing the configuration weight to be nonzero. Hence insteadof computingχ (which
can be done in principle [2]) we redefine our partition function to be

Z2 = ∑
x,y

∫

dψdψ (ψxψx ψyψy) e−S. (5.1)

which always contains two sources. We then redefineχ ≡ 1/ f2 where f2 is the fraction of the
configurations which contain sources one lattice unit apart. The redefined χ has all the same finite
size scaling properties as the original definition ofχ close to the quantum critical point. Below we
will describe the Monte Carlo algorithm for simulating the partition functionZ2. The algorithm
for simulating the real partition function will be the subset of updates in which the sources can be
ignored.

The algorithm consists of four updates: (1) Bond creation/destruction, (2) Bond translation,
(3) Source translation, (4) Worm update. Each update begins with a configuration[n] where 2d
bond variablesnx,α = 0,1 at each sitex are completely defined. Note thatα = ±1,±2, · · · ± d
denote the directions (the negative signs indicate negative directions). Ifa bond exists betweenx
to x+ α̂ thennx,α = 1. In our notationnx,α ≡ nx+α̂,−α . The configuration[n] also defines source
variablesmx = 0,1 such thatmx = 1 on only two sites in the entire lattice. On these sitesnx,α = 0.
The parity of the sitex is given byεx = (1)x1+x2+···+xd .

7
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5.1 Bond Creation/Destruction

Bond creation and destruction is accomplished through a simple Metropolis algorithm. The
exact update is as follows:

1. With probability 1/2 we propose to destroy a bond. IfNb = 0 the update stops. Otherwise we
pick one of bonds randomly with probability 1/Nb. We destroy that bond with probability

P(Nb → Nb −1) =
Nb

N fU
W ′

W
(5.2)

whereW = Det2
{

G([n])
}

andW ′ = Det2
{

G([n′])
}

where[n′] is the new configuration ob-
tained by destroying the bond.N f denotes the number of the locations where we would have
been allowed to create a bond starting from the configuration[n′].

2. With probability 1/2 we decide to create a bond. LetN f to be the number of locations where
we could create a bond. IfN f = 0 the update stops. Otherwise we pick one ofN f locations
with probability 1/N f . We then create the bond at that location with probability

P(Nb → Nb +1) =
N fU

Nb

W ′

W
(5.3)

whereW = Det2
{

G([n])
}

andW ′ = Det2
{

G([n′])
}

where[n′] is the new configuration ob-
tained by creating the new bond.

If we begin with a configuration with a small number of bonds, sinceN f ≫ Nb the acceptance
probabilityP(Nb → Nb +1) is close to one and the algorithm creates bonds efficiently. OnceN fU
is of the order ofNb, the system begins to thermalize and the average number bonds〈Nb〉 fluctuates
only a little.

5.2 Bond Translation

In order to reduce autocorrelation times it is useful to have an update whichcan move bonds
from one location to another. This update is again a Metropolis update and is meaningful only
whenNb 6= 0. We pick an existing bond at random, destroy it and create a bond at another allowed
location picked at random with probability

P =
W ′[n′]
W [n]

(5.4)

whereW ′[n′] andW [n] are the weights of the new configuration and old configurations.

5.3 Source Translation

We need to update the locations of the two sources in the configurations that contribute toZ2.
We again accomplish this using a Metropolis algorithm. We pick one of the sources at random,
destroy it and create it at an allowed site with the same parity as the site where thesource was
destroyed, with probability

P =
W ′[n′]
W [n]

(5.5)

whereW ′[n′] andW [n] are the weights of the new and old configurations.

8
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5.4 Worm Updates

Configurations with two sources come in two varieties. One set of configurations contain both
sources in a single strong coupling fermion bag, while the two sources appear in two different
strong coupling fermion bags in the other set. The above three updates cannot change between
these two set of configurations easily and this can lead to a long autocorrelation time. The reason is
that it is impossible to remove the source from a bag and move it to another bag inone step. Only a
series of correlated moves can accomplish this task. The problem is most severe in the broken phase
and perhaps close to the quantum critical point. Fortunately, worm updatesof the type discussed
in Ref. [13] completely eliminate this problem. Further, they are extremely fast since they do not
require the computation of any determinants. We perform two types of worm updates :

1. Bond Update

(a) We pick a sitex at random and define it as the first site.

(b) If nx,α = 0, the update ends. Otherwise, we break the bond by creating a source at x
andx+ α̂ (i.e., setnx,α = 0, mx = 1 andmx+α̂ ) and move to the sitey = x+ α̂.

(c) We then pick a directionµ such thatx′ = y+ µ̂ contains a bond (nx′,α ′ = 1) or x′ is the
first site (x′ = x). We pick this direction at random from the available choices.

(d) If nx′,α̂ ′ = 1, then we break that bond and create a bond that connects the sitey andx

and move the source fromy to x′+ α̂ ′ (i.e., we setny,µ = 1, my = 0 andmx′+α̂ ′ = 1).
We then redefiney = x′+ α̂ ′ and go back to the previous step.

(e) If x′ = x, then we remove the two sources aty andx and create a bond connecting the
two sites (i.e. setmy = 0, mx = 0 andny,µ = 1). Then the update ends. Note that the
update begins and ends at the same site and hence is a loop update

2. Source Update

(a) We pick one of the two sources at sitex.

(b) We look for all directionsµ that contains a bond. If no such site exists the update ends.
Otherwise a direction is picked at random from the available choices.

(c) If the sitex+ µ̂ contains a bond in theα direction we break this bond and create a new
bond that connectsx andx+ µ̂ and move the source at sitex to the sitex+ µ̂ + α̂ (i.e.,
setmx = 0, mx+µ̂+α̂ = 1 andnx,µ = 1). The update then ends.

When the source update is repeated many times it can move the source from one bag to another
bag. The source update is very cheap and can be repeated thousandsof times within a second.

5.5 Determinant Computation

Except for the worm updates, all other updates require the computation ofthe determinant of
G[n] which is anNb×Nb matrix whereNb is the number of bonds. A change in[n] by a single bond
or source location typically changes one row and one column of this matrix. The most time con-
suming part of the algorithm is calculating the determinants before and after thechange. Changes
in [n] can lead to singular matrices quite often. Further, sub-matrices ofG[n] can also be singular.

9
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There are ways to compute the determinant of a matrix quickly if a single row andcolumn are
changed [14]. However, these tricks involve inverses and must be thought through carefully due to
possible singularities.

In our work we use LU decomposition with complete pivoting to compute the determinant.
However, this approach requiresO(N3

b ) computations. Further, a single sweep requires roughlyNb

bond updates. Hence, naively the computations necessary to accomplish asingle sweep will scale
like O(N4

b ). However, as we explain below, we can speed up the update by a factor of Nb, thus
reducing the number of computations for a single sweep toO(N3

b ).
The basic idea is that if one decides apriori that a fixed set ofl rows andl columns will be

updated in the matrixG[n], then while performing the LU decomposition we can organize our
calculations so that we can reuse a large part of the computation. For example, consider the LU
decomposition of the block matrixG[n]

G[n] =

(

A B
C D

)

(5.6)

whereA, B, C andD are respectivelyNb − l×Nb − l, Nb − l× l, l×Nb − l andl× l matrices. If the
matrix A is not singular, we can compute the determinant ofG[n] as

DetG[n] = DetA · Det(D−CA−1B) (5.7)

SinceA is fixed during the update, the determinant ofG[n] due to varying the elements inB,C,D
requires onlyO(lN2

b ) computations. IfA is singular, then while computing theLU decomposition
of A we can isolate the zero mode sector and merge it with the part that is being updated. Since the
zero mode sector ofA is always tiny the above approach works well.

In order to implement the above idea, we divide the full volume intoNblocks such that every
bond belongs to a unique block. Each block contains roughlyl bonds. We then perform the three
time consuming updates on the bonds associated to a randomly chosen blockj. We choose a basis
such that the matrixG[n] can be written as a block matrix as shown in Eq. (5.6). In particular
the matrixA contains propagators only between sites of bonds that do not belong to theblock j,
while the matrixD contains only propagators between sites of the bonds inj. The matricesB andC
contain propagators between the blockj and outside. We then compute the LU decomposition with
full pivoting on the matrixA. This allows us to isolate any singular part of the matrixA if it exists
and merge it with the matricesB,C andD. Since the singular part also does not change, it can be
easily taken into account if necessary. The updates described above can be adapted to each block
by redefiningNb andN f as numbers obtained within the blockj. By choosingNblock ∼ O(

√
Nb),

the number of computations for one sweep scales likeO(N3
b ). We believe our method is similar to

the “fast-updates” algorithm of the usual determinantal algorithm.

5.6 Performance of the Algorithm

We have studied thermalization times and autocorrelation times for two observables, 〈Nb〉
andCB(L/2− 1), in units of a sweep. In our work, a sweep is defined asV/8 updates of all
types discussed above2. In Fig 5.5, we plot the thermalization time in units of a sweep, for〈Nb〉

2Since worm updates are cheap we perform several thousand worm updates per sweep.
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Figure 3: Thermalization time forNb in terms of sweep using Log plot
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Figure 4: Autocorrelation time forNb (Left) andCB (Right) at|x−y|= L/2−1 in terms of sweep. It shows
the autocorrelation time does not depend onL even atUc

for different volumes where we initialize configurations withV/24 randomly chosen bonds. The
figure shows the system at different volumes can be thermalized within roughly the same number
of sweeps. In Fig 5.5, we plot the autocorrelation timeτ in units of a sweep. One typically expects
τ ∝ Lz, wherez is the dynamical critical exponent of the algorithm. For most local algorithms
1 6 z 6 2. Many efficient cluster algorithms on the other hand are known to have 0< z 6 1.
Surprisingly, our data shows thatz ≈ 0 even atU =Uc. However, we must emphasize that the time
spent for each sweep grows as( fV )3 where f < 1 is some fixed fraction at a given value ofU . At
the critical pointf ∼ 1/8. Despite this bad scaling with the volume, sincef is small we have been
able to obtain results on lattices as large as 403 with modest computing resources.

6. Results

One of the main goals of our work is to compute the critical exponents at the quantum critical
point. These have been calculated earlier in Refs. [9, 10, 11, 12] usingthe HMC method with the
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Figure 5: Plots ofχ−1L2−η , 〈q2
χ〉 andR f L2+ηψ as a function ofU for L = 12,16,20,24,28,32,36 and 40.

The solid lines show the combined fit. Based on the fits we find the critical point to beU = 0.2608(2), and
three critical exponents areν = 0.85(1),η = 0.65(1) andηψ = 0.37(1).

traditional approach in which the four-fermion interaction is converted to a fermion bilinear with
the help of an auxiliary field. However, these calculations were performedin the presence of a
quark masses and on lattice volumes that were not very big. The presenceof two infrared scales,
namely the fermion mass and the length of the box can be difficult to take into account in the finite
size scaling relations which can lead to large systematic errors. In our work, since the fermions
are exactly massless, the analysis is much simpler and cleaner. We focus onχ, 〈q2

χ〉 andR f in the
vicinity of Uc where we expect the following finite size scaling relations to hold:

χ−1L2−η =
3

∑
k=0

fk

[

(U −Uc)L
1
ν

]k
(6.1a)

〈q2
χ〉=

3

∑
k=0

κk

[

(U −Uc)L
1
ν

]k
(6.1b)

R f L
2+ηψ =

3

∑
k=0

pk

[

(U −Uc)L
1
ν

]k
(6.1c)

For each observable, when the left hand side is plotted as a function ofU , curves for different
values ofL must cross atU =Uc. A combined fit to all the Eqs. (6.1) gives the critical exponents
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ν = 0.85(1),η = 0.65(1) and ηψ = 0.37(1) andU = 0.2608(2) with a χ2/d.o. f . = 1.3. The
complete list of fit parameters are listed in Table 1. The results from the combined fit are plotted in
Fig. 5. For comparison, one of the earlier work findsν = 0.71(4) andν = 0.60(2) [11].

Table 1: Results for the fit parameters from the combined fit of the datato Eqs. (6.1).

η ηψ ν Uc κ0 κ1 κ2 κ3

0.65(1) 0.37(1) 0.85(1) 0.2608(2) 0.369(3) 0.63(1) 0.52(2) 0.09(1)

f0 f1 f2 f3 p0 p1 p2 p3

2.52(3) -2.53(5) 0.71(3) 0.10(1) 33.9(2) -5.0(1) -2.0(2) -2.5(5)

7. Conclusions

In this work we have shown that the recently proposed fermion bag approach is a powerful
technique for solving some four-fermion lattice field theories. Due to an interesting duality, the
approach is efficient both at weak and strong couplings and continues toperform well at intermedi-
ate couplings. As a first application of the method we studied the critical behavior in the massless
Thirring model and found an algorithm that practically eliminates critical slowingdown when times
are measured in units of sweep. The time to perform a sweep scales asO(N3

b ) whereNb is the size
of a fermion bag which is usually a small fraction of the volume. In the massless thirring model we
found thatNb ∼V/8 at the quantum critical point. The Hybrid Monte Carlo method has never been
successfully applied to massless fermions on large volumes. We have accomplished this using the
fermion bag approach on lattices as large as 403 with moderate computing resources. We were able
to compute the critical exponents at the quantum critical point.
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