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1. Introduction

Monte Carlo methods for lattice field theories with massless fermions in three @ aior
mensions continue to pose a variety of challenges. For example, the pbigybliad Monte Carlo
(HMC) method encounters many difficulties. Sometimes the method encountergrelgems,
while in other cases small eigenvalues of the fermion matrix lead to severdasitigs. For this
reason most practical calculations have always relied on extrapolatitims meassless limit. Stud-
ies in Quantum Chromodynamics have shown that reliable extrapolationiseregiculations at
many small fermion massefg [1]. As far as we know Monte Carlo calculatiotega lattices with
exactly massless fermions have never been performed so far with trabiflonte Carlo methods
including the HMC.

Recently, an alternative Monte Carlo method called the fermion bag appn@eabroposed to
solve some four-fermion lattice field theories with exactly massless fernjibni y24s shown that
the method is extremely efficient at strong couplings where traditional Moati® @Gethods fail.
Here we argue that the method is also quite general and can be appliedigtyaafgproblems and
in addition, contains an interesting strong-weak coupling duality which maken¢ithod efficient
even at weak couplings. The efficiency is due to the fact that the rebefiiert to perform a single
local update scales like the square of the number of fermion degreeedbin inside a bag instead
of the space-time volume. Interestingly, the bag size is a small fraction of theddgnamic
volume at both strong and weak couplings. In the massless lattice Thirrind mibidé we study
here as a first application, the fermion bags typically contain only an eighttedbtal degrees of
freedom even at the quantum critical point. Due to this feature, for thdifire we are able solve
a three dimensional lattice field theory containing exactly massless fermioegsalas interesting
quantum critical point on lattices as large as 40th modest computing resources. Through a
careful finite size scaling analysis we are able to extract the critical experaccurately at the
guantum critical point in this model.

2. The Fermion Bag Idea

The idea behind the fermion bag is to identify fermion degrees of freedotrc#use sign
problems and collect them in a bag and sum only over them. This is in contrasidttonal
approaches where all fermion degrees of freedom in the entire themamily volume are summed
over in order to solve the sign problem. In some four-fermion models, theede@f freedom
inside a fermion bag often involve only a small fraction of the total number gfess of freedom
in the entire thermodynamic volume and can be summed up quickly yielding a pogéigét.
This makes the fermion bag approach very powerful. It is an extensitdreaheron cluster idea
proposed some time agd [3].

In order to illustrate the idea consider models formulated withstes of massless staggered
fermions. These models contain Grassmann variables per site which will be denoteggxs)
and@;(x) wherei = 1,2, ..nrepresent taste indices andenotes the space time lattice point. Det
be theV x V free staggered Dirac matrix whose matrix elements are denofeg .ashe properties
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Interaction bonds

strong coupling fermion bags Weak coupling fermion bag

Figure 1. An illustration of a “fermion-bag” configuration at stronguplings (left) and weak couplings
(right). The interaction sites are represented throughisohds and the fermion bags are represented through
the shaded region. At strong couplings the fermion bag aierng of free sites and breaks up into many
disconnected pieces as seen in the left figure, while at weaglings the bag contains interaction sites.

of D are such that ank-point correlation function of chiral condensates
Ci(Xe, e Xe) = /[dwmm eXp(Z Wi (X) Dyy ¢ (W)Wi )e(xa) - P (2.1)
Xy

involving the taste is always positive. Using Wick contractions it is easy to prove that

Ci(x1,..,Xx) = Det(D) Det(G[{x}]) (2.2)
whereG[{x}] is thek x k matrix of propagators between thesitesx;,i = 1,..,k whose matrix
elements ar€&y x, = Di%q- It is also possible to argue tht [2],

Ci(xa,..,X«) = Det(W[{x}]) (2.3)

where the matrixV[{x}] is the same as the matilixexcept that that the sitds} = {x;,i =1,2, ..k}
are dropped from the matrix. Thua/is a(V —K) x (V — k) matrix. The identity

Det(D) Det(G[{x}]) = Det(W[{x}]) (2.4)

is the basis behind the weak coupling-strong coupling duality we mentionedpnetieus section.
Now consider a generic four fermion lattice field theory action involvimgassless staggered
fermions given by
~3 B0 =5 5 Uiy G OIT; ()W (y) (2.5)
XY,

where(xy) refers to some well defined set of neighboring lattice sites. Further we wilhas that
all the couplingdJ; ; ) are non-negative real constants. The partition function of the model

7= / [dpdy] e S (2.6)
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can be expanded in powers of the couplitgs , and each term in the expansion consists of
a product of correlation functions of the ty@g(xs,...,Xx) introduced above. Mathematically the
expansion looks like

n

Z= 3% {upP _ﬂQ(xl,.--,an) 2.7)
[{x}] 1=

where{[U]}P refers to some generic power of the coupling &jd= 1,2, ..n refers to the number

interaction vertices for each taste. Note that on a finite lattice the expansioreiy aigh order

polynomial and so no convergence issues arise.

An intuitive physical picture emerges from the above expansion of thgipafunction. Since
the k; interaction sites contain botly and;, fermions are already paired on these sites and do
not cause sign problerhsOn the other hand, unpaired fermions that hop freely on the remaining
sites can indeed cause sign problems. The free sites are collectivehgddie as a fermion bag.
The summation of all fermion world lines inside the bag should be a determinantvof- ki) x
(V — ki) matrix. IndeedCi(x1,%p,..,X) = DetW[{x}]). The determinant can be evaluated easily
if (V —k;) is small, which naturally occurs at strong couplings. Hence we refer te thags as
strong coupling fermion bags. It was shown fh [2] that at strong couplanéermion bag splits
into many small disconnected pieces making things even simpler. The left 6§&ig. 1 gives
an illustration of the disconnected pieces of a fermion bag at strong cospliftie solid bonds
represent interaction sites while the sites in the shaded regions are feeargltéorm the fermion
bag. The arrows inside the shaded regions is an illustration of free fem@dd lines inside the
bag.

Clearly at weak couplings the number of free sites grows enormouslys, The definition
of a fermion bag as a set of free sites, which was natural at strondingsiposes its charm at
weak couplings. However, thanks to a duality we can construct the ferpaigrdifferently. At
weak couplings we can view the interactions as the unpaired fermionicedegfdreedom that
cause fluctuations over the paired fermionic free vacuum as they hiwpdine interaction site to
another. The effort to compute these fermionic fluctuations should only gsothe determinant
of ak; x ki matrix. The duality relation of Ed.(3.4) shows ti@txi,Xp,..,x) = DetW[{x}]) =
Det(D) Det(G[{x}]) where the fluctuation matri%[{x}| is indeed ak; x k; matrix. The right
figure of Fig[1 gives an illustration of a weak coupling fermion bag. The $alittls again represent
interaction sites which form the fermion bag. Fermions hop from one interastie to another
through the free fermion propagator. One set of hopping is shownrbyain the figure.

We must acknowledge that the weak coupling fermion bag idea is exactlyadenti to the
idea of summing over all Feynman diagrams and was introduced earlier irathevirork of dia-
grammatic determinantal Monte Carlo methods. For a review please se¢Réfdied the sum
over all Wick contractions at the given order in perturbation theory is sirb@yG[{x}]). On
the other hand, we think the fermion bag approach as a more natural @téipm at least in the
context of lattice field theories since it uncovers the powerful conceguality discussed above
and shows that the approach is efficient both at weak and strong ogsiplin

The fermion bag approach is rather general and is equally applicablateefadivistic fermions
and models with Wilson fermions. However, sometimes it is necessary to ingoteonventional

1Any remaining sign problem would also be present in a bosonic field theory
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interactions like eight fermion interactions. In some models, the weight ofraidarbag is no
longer a determinant but involves new mathematical structures like fermidbnthese are very
similar to determinants, and may be exponentially difficult to comdlite [6]. Foetheslels, the
fermion bag approach is not practical.

3. Massless Thirring Model

As a first application of the fermion bag approach we have studied the dimensional
massless lattice Thirring model. It is a lattice field theory containing massless fer@mimm an
interesting quantum critical point. Variants of this model have been usedtigdo describe the
critical points associated with Graphef [7]. The model is constructed watiBrassmann valued
fields @(x) and@(x) on each sitex of a cubic lattice. The lattice action is given by

S=-5 W(x) Dy Y(y)-U Z POYX) PY)P(y). (3.1)
Xy (xy,

Here (xy) refers to the set of nearest neighbor sites across a bond. We uge@odic bound-
ary conditions in all the three directions. The four fermion couplihgenerates the current-
current coupling of the Thirring model in the continuum. The lattice model is iaraunder a
Ut (1) x Uy (1) symmetry, wherdJ¢(1) is the fermion number symmetry att} (1) is the chiral
symmetry. When the coupling is small the model containd; = 2 flavors of massless four-
component Dirac fermions at long distances due to fermion doubling. Ad¢ lardpe chiral sym-
metry breaks spontaneously and generates a single massless Goldstmmevhibe the fermions
become massive. There is a quantum critical pbipvhich separates the phase with massless
fermions from the phase with massless bosons.

The model has been studied earlier using mean field technifjues [8], anehtional Monte
Carlo methods[]9} 10, 1{,]12]. In particular properties of the quantiticarpoint have been
computed. However, all previous work was done in the presence ofradie mass and on lattice
sizes which are not very big compared to the correlation lengths introdlueetb the presence of a
fermion mass. Thus, the analysis may contain uncontrolled systematic éfoesh Monte Carlo
method which works directly in the massless limit should be useful. This is whace@mplish
here using the fermion bag approach.

The fermion bag approach for the model was first developefd in [2].édewin the previous
study only strong coupling bags were used since the concept of duabtypetappreciated. Here
we repeat the study with weak coupling bags and are able to push the stadyeiolattice sizes.
In the fermion bag approach the partition function of the model in[Edj.(3.1beaswritten as

Z ="y U"DetW[n]) (3.2)
[n]
where [n] refers to the configuration of interaction bondlg, = 0,1 andNy refers to the total
number of bonds. For a given configuratiof the free sites form the strong coupling fermion bag
(see the left figure in Fig] 1). However this representation of the partitiantion is not useful
whenNjy is a small fraction of the volume. For example, at the quantum critical Pgjig about
an eighth of the lattice volume. On the other hand, one can use the duality relation

Det(W[n]) = Det(D)[Det(G[n])] (3.3)
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to simplify the computation whely is small. HereD is the free staggered fermion matrix on the
whole lattice ands[n] is theN, x N, free fermion propagator matrix between even lattice sites to
the odd lattice sites of the bonds. This representation is equivalent tofanitale of the fermion
bag as the set of interaction sites (see the right figure ofFig. 1).

4. Observables

In order to uncover the properties of the quantum critical point we haasuned four observ-
ables:

1. The simplest is the average number of bofidg. Fluctuations in this observable allow us
to monitor equilibration and autocorrelation times easily.

2. Since we work with exactly massless fermions the chiral condensate wéyslbe zero.
However, the chiral condensate susceptibility is nonzero. It is defined a

1
X = g3 3 (B, (4.1

We expecty to scale as>" at the critical point. A related quantity is the bosonic two-point
function:

CB(‘X_yD = @waxwwﬁu)» (4.2)
We will define the raticCg(L/2—1)/Cg(1) as a useful way to track autocorrelations.
3. Another useful observable that measures the onset of chiral syynioneaking is the chiral

winding susceptibility(q)z(>. If we define the conserved chiral charge passing through the
surfaceS perpendicular to the directiam as

Oa=Y &MNxa (D xxia + Y 26 (4.3)
X/ a )gg X X,a XX+a ng X

wheres, = (12 is the parity of the site X, they2) = (3 54 (02)q), is expected to be
independent df at the critical point. This allows us to determine the critical point accurately.

4. Since one of the novel features of the current quantum critical jgihé presence of mass-
less fermions at the critical point, the fermion two-point correlation functiexjsected to
show non-trivial scaling. Hence we define

=

Q
M

Cr(d) (U rda) (4.4)

~3
wherex belongs to a site witlg(x) = 1 anda is a unit vector along each of the three direc-
tions. We compute the ratis = Cr (L/2— 1)/Cr (1) which is expected to scale hs(21v)

at the critical point.
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odd fermion bags : : ; | ; ; : :

Figure 2: An illustration of a zero weight configuration due to the s of a fermion bag with an odd
number of free sites. The staggered fermion Dirac operafinedd on an odd number of lattice sites has an
exact zero mode

5. The Algorithm

We now discuss the details of the Monte Carlo algorithm we have used to selusotitel. An
important technical problem is that some observablesyikgt contributions from configurations
that do not contribute to the partition function. For example, the configuralistrated in Fig[P
contributes tay, but has zero weight in the partition function. This is because, in the massles
limit any strong coupling fermion bag with an odd number of free sites hasweight. However,
introducing ap(x) Y (x) source in each of the two odd bags makes the number of free sites even and
thereby changing the configuration weight to be nonzero. Hence insteammputingy (which
can be done in principld][2]) we redefine our partition function to be

-3 / APy (W Byy) € (5.1)

which always contains two sources. We then redefine 1/f, where f; is the fraction of the
configurations which contain sources one lattice unit apart. The redefihas all the same finite
size scaling properties as the original definitioryatlose to the quantum critical point. Below we
will describe the Monte Carlo algorithm for simulating the partition functian The algorithm
for simulating the real partition function will be the subset of updates in whietstiurces can be
ignored.

The algorithm consists of four updates: (1) Bond creation/destruc®rBdnd translation,
(3) Source translation, (4) Worm update. Each update begins with agocation [n] where 21
bond variablesy o = 0,1 at each sitex are completely defined. Note that= +1,+2,.--+d
denote the directions (the negative signs indicate negative directiorsshaifd exists between
to x+ & thenny o = 1. In our notatiomy ¢ = Ny, 4 _o. The configuratiorin] also defines source
variablesm, = 0,1 such tham, = 1 on only two sites in the entire lattice. On these sitgs = 0.
The parity of the sitex is given bygy = (1)t +Xa,
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5.1 Bond Creation/Destruction

Bond creation and destruction is accomplished through a simple Metropolistlatgo The
exact update is as follows:

1. With probability /2 we propose to destroy a bond N = 0 the update stops. Otherwise we
pick one of bonds randomly with probability' il,. We destroy that bond with probability
Ny W

P(Nb — Nb — 1)
whereW = Detz{G([n])} andwW’ = DetZ{G([n’])} where[n] is the new configuration ob-
tained by destroying the bonbl; denotes the number of the locations where we would have
been allowed to create a bond starting from the configuration

2. With probability /2 we decide to create a bond. It to be the number of locations where
we could create a bond. N¢ = 0 the update stops. Otherwise we pick ondeflocations
with probability 1/N¢. We then create the bond at that location with probability

N¢U Vl'

P(Npb = Np+1) = Ny W

(5.3)
wherew = DetZ{G([n])} andwW’ = DetZ{G([n’])} where[n'] is the new configuration ob-
tained by creating the new bond.

If we begin with a configuration with a small number of bonds, siNge> N, the acceptance
probability P(N, — N, + 1) is close to one and the algorithm creates bonds efficiently. Qlipde
is of the order of\,, the system begins to thermalize and the average number biggiductuates
only a little.

5.2 Bond Trandation

In order to reduce autocorrelation times it is useful to have an update waicinove bonds
from one location to another. This update is again a Metropolis update andaisngéul only
whenNy £ 0. We pick an existing bond at random, destroy it and create a bond thiearadiowed
location picked at random with probability

_ WIn']
W

whereW’[n'] andW|n| are the weights of the new configuration and old configurations.

(5.4)

5.3 Source Trandation

We need to update the locations of the two sources in the configuration®titebate tozZ,.
We again accomplish this using a Metropolis algorithm. We pick one of the soataandom,
destroy it and create it at an allowed site with the same parity as the site wheseuttoe was
destroyed, with probability
~ Wn]
~ Winj
whereW'[n'] andW|[n] are the weights of the new and old configurations.

(5.5)
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5.4 Worm Updates

Configurations with two sources come in two varieties. One set of confignsacontain both
sources in a single strong coupling fermion bag, while the two sourcearlppévo different
strong coupling fermion bags in the other set. The above three updatest cdiange between
these two set of configurations easily and this can lead to a long autotionr¢iae. The reason is
that it is impossible to remove the source from a bag and move it to another bag step. Only a
series of correlated moves can accomplish this task. The problem is mexs sethe broken phase
and perhaps close to the quantum critical point. Fortunately, worm upolaties type discussed
in Ref. [I3] completely eliminate this problem. Further, they are extremely ifase shey do not
require the computation of any determinants. We perform two types of wpdates :

1. Bond Update

(a) We pick a sitex at random and define it as the first site.

(b) If nyq =0, the update ends. Otherwise, we break the bond by creating a source a
andx+ @ (i.e., setny ¢ = 0, my = 1 andmy, 4) and move to the sitg=x+ 4.

(c) We then pick a directiop such thai' =y [i contains a bondnf o = 1) orx’is the
first site ' = x). We pick this direction at random from the available choices.

(d) If Ny g =1, then we break that bond and create a bond that connects tlyeasitkx
and move the source fromto X +a’ (i.e., we seny,, =1, m, =0 andm,,, ., = 1).
We then redefing = X' + a’ and go back to the previous step.

(e) If X = x, then we remove the two sourcesyandx and create a bond connecting the
two sites (i.e. sein, =0, my =0 andny, = 1). Then the update ends. Note that the
update begins and ends at the same site and hence is a loop update

2. Source Update

(a) We pick one of the two sources at site

(b) We look for all directiongu that contains a bond. If no such site exists the update ends.
Otherwise a direction is picked at random from the available choices.

(c) If the sitex+ [i contains a bond in the direction we break this bond and create a new
bond that connectsandx+ [1 and move the source at sit¢o the sitex+ [i1 + & (i.e.,
setmy =0, m, ;14 = 1 andny,, = 1). The update then ends.

When the source update is repeated many times it can move the source &dmagio another
bag. The source update is very cheap and can be repeated thooksames within a second.

5.5 Determinant Computation

Except for the worm updates, all other updates require the computattbe determinant of
G[n] which is anNy x Np matrix whereN, is the number of bonds. A change[imj by a single bond
or source location typically changes one row and one column of this matrix.nidst time con-
suming part of the algorithm is calculating the determinants before and aftendinge. Changes
in [n] can lead to singular matrices quite often. Further, sub-matricE€npfcan also be singular.
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There are ways to compute the determinant of a matrix quickly if a single rowcalndnn are
changed[[74]. However, these tricks involve inverses and must bghhthrough carefully due to
possible singularities.

In our work we use LU decomposition with complete pivoting to compute the detarnmin
However, this approach requir@Ng) computations. Further, a single sweep requires roulhly
bond updates. Hence, naively the computations necessary to accongiligfieasweep will scale
like O(Ng‘). However, as we explain below, we can speed up the update by a fadir thus
reducing the number of computations for a single swee(p(t(bg).

The basic idea is that if one decides apriori that a fixed sétrofvs andl columns will be
updated in the matrixa[n|, then while performing the LU decomposition we can organize our
calculations so that we can reuse a large part of the computation. For lexaropsider the LU

decomposition of the block matri®[n]
A B
G[n) = (C D) (5.6)

whereA, B, C andD are respectivel, — 1 x Np—1, Np— 1 x 1,1 x N, — I andl x | matrices. If the
matrix A is not singular, we can compute the determinar®pf] as

DetG[n] = DetA - Det(D — CA™'B) (5.7)

SinceA is fixed during the update, the determinanGjf] due to varying the elements BiC,D
requires onlyO(IN2) computations. IfA is singular, then while computing th&) decomposition
of Awe can isolate the zero mode sector and merge it with the part that is beingdip8ance the
zero mode sector dk is always tiny the above approach works well.

In order to implement the above idea, we divide the full volume Mig.ks such that every
bond belongs to a unique block. Each block contains roughtynds. We then perform the three
time consuming updates on the bonds associated to a randomly chosen.Bdekhoose a basis
such that the matrixs[n] can be written as a block matrix as shown in Hq.](5.6). In particular
the matrixA contains propagators only between sites of bonds that do not belong Iiotiej,
while the matrixD contains only propagators between sites of the bonjlsTihe matrice® andC
contain propagators between the blgand outside. We then compute the LU decomposition with
full pivoting on the matrixA. This allows us to isolate any singular part of the ma#iif it exists
and merge it with the matricdd C andD. Since the singular part also does not change, it can be
easily taken into account if necessary. The updates described afobve @dapted to each block
by redefiningN, andN; as numbers obtained within the blogk By choosingNpjock ~ O(v/Np),
the number of computations for one sweep scalescukég). We believe our method is similar to
the “fast-updates” algorithm of the usual determinantal algorithm.

5.6 Performance of the Algorithm

We have studied thermalization times and autocorrelation times for two obsexvélie
andCg(L/2— 1), in units of a sweep. In our work, a sweep is defined/g8 updates of all
types discussed abo¥e In Fig[5.5, we plot the thermalization time in units of a sweep,(idy)

2Since worm updates are cheap we perform several thousand wolatesgper sweep.

10
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Figure 3: Thermalization time folN, in terms of sweep using Log plot
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Figure4: Autocorrelation time fol\y, (Left) andCg (Right) at|x—y| =L/2—1 in terms of sweep. It shows
the autocorrelation time does not depend.aven atJ.

for different volumes where we initialize configurations witi24 randomly chosen bonds. The
figure shows the system at different volumes can be thermalized withimigotige same number

of sweeps. In Fi§ 55, we plot the autocorrelation tiia units of a sweep. One typically expects

T O L% wherez is the dynamical critical exponent of the algorithm. For most local algorithms
1 < z< 2. Many efficient cluster algorithms on the other hand are known to havez & 1.
Surprisingly, our data shows that: 0 even at) = U.. However, we must emphasize that the time
spent for each sweep grows @&/ )3 wheref < 1 is some fixed fraction at a given valuelof At

the critical pointf ~ 1/8. Despite this bad scaling with the volume, sirfcis small we have been
able to obtain results on lattices as large aswith modest computing resources.

6. Results

One of the main goals of our work is to compute the critical exponents at theeuqoaritical
point. These have been calculated earlier in R¢fd. [ 1q, 11, 12] trenigMC method with the

11
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Figure5: Plots of L%, (g2) andR¢L?*" as a function ofJ for L = 12,16, 20, 24,28,32,36 and 40.

The solid lines show the combined fit. Based on the fits we fiedttitical point to béJ = 0.26082), and
three critical exponents are= 0.85(1),n = 0.65(1) andny = 0.37(1).

traditional approach in which the four-fermion interaction is converted termibn bilinear with
the help of an auxiliary field. However, these calculations were perfoiméte presence of a
quark masses and on lattice volumes that were not very big. The presieimas infrared scales,
namely the fermion mass and the length of the box can be difficult to take intamtdoche finite
size scaling relations which can lead to large systematic errors. In our, wiode the fermions
are exactly massless, the analysis is much simpler and cleaner. We foxu$q§r)1 andR; in the
vicinity of U; where we expect the following finite size scaling relations to hold:

X2 = ifk [(u —uc)Lﬂ “ (6.1a)
k=
3 k
(@) = > K [(U —Uc)Lﬂ (6.1b)
k=0

<Ik

3 k
RiLZH = $ p [(U —Ug)L } (6.1¢)
k=0

For each observable, when the left hand side is plotted as a functidn cdirves for different
values ofL must cross at) = U.. A combined fit to all the Eqs[(8.1) gives the critical exponents

12
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v = 0.85(1),n = 0.65(1) and ny = 0.37(1) andU = 0.26082) with a x?/d.o.f. = 1.3. The
complete list of fit parameters are listed in Tale 1. The results from the codfiilaee plotted in
Fig.[§. For comparison, one of the earlier work finds- 0.71(4) andv = 0.60(2) [fL1].

Table 1: Results for the fit parameters from the combined fit of the tatgs. (6.1).

n Ny v Uc Ko K1 Ko K3
0.65(1) 0.37(1) 0.85(1) 0.2608(2) 0.369(3) 0.63(1) 0.52(2) 0.09(1)
fo f1 fo f3 Po P1 P2 P3

252(3) -253(5) 0.71(3) 0.10(1) 33.92) -5.0(1) -2.02) -2.5(5)

7. Conclusions

In this work we have shown that the recently proposed fermion bag appris a powerful
technique for solving some four-fermion lattice field theories. Due to an stiageduality, the
approach is efficient both at weak and strong couplings and continpesftom well at intermedi-
ate couplings. As a first application of the method we studied the critical metiaxthe massless
Thirring model and found an algorithm that practically eliminates critical slowimgn when times
are measured in units of sweep. The time to perform a sweep sca]Esl@swherer is the size
of a fermion bag which is usually a small fraction of the volume. In the masslegaghmodel we
found thatN, ~ V /8 at the quantum critical point. The Hybrid Monte Carlo method has never bee
successfully applied to massless fermions on large volumes. We have dist@aphis using the
fermion bag approach on lattices as large aswith moderate computing resources. We were able
to compute the critical exponents at the quantum critical point.
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