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1. Introduction

The incompressible Navier-Stokes equation

∂tu+(u,∇u)−ν∇2u=−
1
ρ

∇p (1.1)

provides the basis for the description of laminar flow. Hereu= u(x, t) is the velocity,p= p(x, t) the
pressure, andν the kinematic viscosity. In the limit whereν → 0+ however, the flow is known to
become highly irregular, turbulence ensues, and one may ask if (1.1) still captures the full dynam-
ics. For such a state it is certainly necessary to consider a statistical theorywhereu(x, t) is a random
field in space and time and (1.1) is replaced with an infinite hierarchy of dynamical equations that
relate the different orders of correlation functions. Usually one has to rely on certain closure as-
sumptions to close this set of equations (see e.g. [1]). One may take anotherroute however, where
one starts from reasonable assumptions on the symmetries of the problem. In particular, assuming
statistical homogeneity, isotropy, and scale-invariance, simple dimensional analysis yields a tight
prediction for the moments of velocity differences (structure functions)

(∆ru)n ∝ rζn , ζn = n/3 , (1.2)

where∆r = (u(x+ r)−u(x),er), and the bar· · · denotes spatial averaging. The universality con-
jecture [2] then states that this scaling behavior should hold far from the boundaries and indepen-
dent of the mechanisms that generate the flow. Nevertheless, both experiment and direct numerical
simulations of (1.1) indicate a violation of this scaling behavior for high-ordermoments (see e.g.
[3, 5, 4]). In terms of symmetries this corresponds to the breaking of scale-invariance. Highly
erratic, intermittent structures give the dominant contribution to these moments, the universal sta-
tistical properties of which are still largely unknown. What is the nature of these structures, and is
it possible to understand their properties from first principles?

Here, the random-force-driven Burgers equation (see [6, 7, 8] for a review) is taken as a one-
dimensional model

∂tu+u∂xu−ν∂ 2
x u= f (1.3)

of the Navier-Stokes equation. We artificially generate a turbulent state by driving the system by a
self-similar forcing that is white-in-time

〈 f (k, t) f (k′, t ′)〉= D0|k|
β δ (k+k′)δ (t − t ′) . (1.4)

The brackets〈· · · 〉 denote ensemble averaging,D0 is a dimensionful parameter, andβ measures
the relative strength of the forcing at different scales. For large, negative values ofβ the forcing
effectively acts at large scales∼ L. On the other hand kinematic viscosityν provides a dissipation
scaleη , and forν → 0+ these two characteristic scales separate. In particular, forβ = −1 the
interplay of the stochastic forcing and advective term leads to a Kolmogorovenergy spectrum
E(k) ∝ |k|−5/3 in the intermediate range of scales, reminiscent of Navier-Stokes turbulence [9, 10].
The physical picture that one may associate with this scenario is the appearance of shocks with
a finite disspative width (see Fig. 1). These structures give the dominant contribution to the high
order moments of velocity differences, and leads to a strong form of intermittency [11, 12] where

〈|∆u|n〉 ∝ r , n≥ 3 . (1.5)
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Figure 1: Velocity profileu(x) from a simulation on a 254×1024 (space× time) lattice, wherex is taken
in units of the spatial lattice sizeL.

In view of the well-established anomalous scaling behavior of Burgers turbulence [13] and the
physical picture of the underlying mechanisms for intermittency [9, 10, 11, 12], Burgers equation
(1.3) provides an ideal benchmark setting to test new analytical and numerical methods for Navier-
Stokes turbulence.

2. Functional Integral

The functional integral representation for the random-force-drivenBurgers equation is ob-
tained via the Martin-Siggia-Rose formalism by means of an auxiliary response fieldµ [14, 15, 16,
17]. We have the partition function

Z =
∫

d[u]d[µ ]exp{−S[u,µ ]} , (2.1)

where the actionS[u,µ ] is given by

S=−i
∫

dt dxµ(∂tu+u∂xu−ν∂ 2
x u)+

1
2

∫

dt dxdyµ(x, t)D(x−y)µ(y, t) . (2.2)

Here,D(x− y) is the spatial part of the two-point correlation function (1.4). Notice, that inthis
form the action does not satisfy positivity. To obtain a Gibbs measure that can be sampled by a
Markov chain Monte Carlo (MCMC) algorithm we integrate out the auxiliary field. This leaves us
with the probability density functional

P[u] = exp
{

−
1
2

∫

dt dxdy(∂tu+u∂xu−ν∂ 2
x u)D−1(x−y)(∂tu+u∂xu−ν∂ 2

x u)
}

, (2.3)

which is the starting point for our investigations.

3. Lattice Theory

The theory is defined by placing the fieldu(x, t) on the sites of a regular space-time lattice
Λ, i.e. (x, t) ∈ Λ. This way, we impose a UV cutoff that eliminates the details of those processes
occurring deep in the dissipative regime. Then, the measure is given byd[u] → ∏(x,t)∈Λdu(x, t)
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and the action in (2.3) needs to be discretized appropriately. We replace thedynamics (1.3) with a
finite-difference equation with backward-time discretization

∂tu+u∂xu→
1
ε
(u(t)−u(t − ε))+u(t − ε)∂xu(t − ε) , (3.1)

whereε is the lattice spacing in time direction. This ensures the correct dynamics in the continuum
limit [18]. For the advective term we take the anti-symmetric spatial derivative

∂xu→
1
2a

(u(x+a)−u(x−a)) , (3.2)

wherea is the lattice spacing in the spatial direction. With this choice of discretization the prob-
lem is amenable to a local over-relaxation algorithm [19]. Starting from an initial configuration
{u(x, t),(x, t) ∈ Λ} the set of single-site variables is updated iteratively by the successive appli-
cation of a transition probabilityP(u(x, t)→ u′(x, t)). We use the high-qualityranlux (pseudo)
random number generator [20] which is essential for large-scale lattice simulations. Specific im-
provements, e.g. Chebyshev acceleration [21] significantly reduce thermalization and autocorrela-
tion times for the relevant observables.

In our simulations we use periodic boundary conditions in space and fixed (Dirichlet) boundary
conditions in time. That way we eliminate the zero mode from the dynamics. One important point
is that the probability distribution functional (2.3) defines a stationary process for a system of
infinite extent (in the time direction), i.e.

〈u(x1, t)u(x2, t) · · ·u(xn, t)〉= 〈u(x1, t + t ′)u(x2, t + t ′) · · ·u(xn, t + t ′)〉 . (3.3)

In practice, this condition has to be checked explicitly. We find that for a finitespace-time lattice
this property holds to good approximation in the middle of the configurations where boundary
effects are neglible. This defines the physical region where one may extract correlation functions.

Another issue is that of Galilean invariance [22, 23]. Both the action (2.3) and the measure are
invariant in the continuum under Galilean transformations

x→ x+ r , u(x)→ u(x+ r)+v , r = vt . (3.4)

To avoid an overcounting of field configurations one has to perform a gauge fixing in the dynamic
functional (2.3). While gauge fixing is unavoidable for generic correlation functions this is not so
for velocity differences that are clearly invariant under (3.4).

We want to give a short remark on the computational requirements. Since weuse a local
over-relaxation algorithm, the long-range correlations imposed by the forcing (1.4) prohibit any
attempt to parallelize in the spatial direction. This poses a severe problem when turning to higher
dimensions and it is absolutely necessary to switch to a global, e.g. Hybrid Monte Carlo algorithm.
With a parallel code (in the time direction) for a 245×1024 lattice (space× time) our simulations
currently run on up to 512 processors.

4. Results

Structure functions are evaluated over an ensemble of configurations generated by the MCMC
algorithm. We measure structure functions in the middle of our configurations atrandomly chosen
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Figure 2: (a) Log-log plot of the structure function of ordern = 5 with a linear scaling function plotted
for comparison. Vertical bars indicate the region for the extraction of scaling exponents. Inset shows the
local slopes versusr. (b) Structure function scaling exponentsζn versus ordern. The black curve indicates
a bifractal scaling behavior.

starting points. That way it is possible to reduce autocorrelation effects significantly. The main
results of our simulations are shown in Fig. 2a and Fig. 2b. For details on the extraction of structure
functions and the scaling spectrum we refer to [24]. Here, as an examplewe show a log-log plot
of the fifth order structure function (see Fig. 2a). The scaling region is clearly visible, and we have
indicated the region for the extraction of the scaling exponents by two vertical lines. In practice,
we are bound to work at finite viscosity, and at small values of the separation we see the dissipative
regime where the scaling breaks down. For comparison, in the inset we have plotted the local
scaling exponents evaluated over three successive points. One may recognize, that in the scaling
region the values lie on a plateau (as indicated by the horizontal line) which defines the scaling
exponent. Applying this procedure to all structure functions of ordern < 5 yields the scaling
spectrum shown in Fig. 2b. The black line shows the bifractal scaling prediction (1.5). Our results
are in good agreement with this prediction and also with previous results fromhigh-resolution
simulations employing a fast Legendre transform algorithm [13].

We can extract important information on the physical behavior from the probability distribu-
tion functions (PDF) of velocity differencesP(∆u, r). In Fig. 3a we show the PDF of velocity
differences∆u= u(x+ r)−u(x) for different values of the separationr plotted as a function of the
dimensionless variableφ = ∆u/[〈∆u2〉]1/2. One may clearly recognize the influence of the random
forcing acting at large scales (red) where the fluctuations become Gaussian. For smaller values of
the separation large fluctuations become strongly enhanced by the dynamics(blue, orange). In par-
ticular, in the disspative regime (orange), at very small separations, these fluctuations are directly
associated with the dissipative shocks (see Fig. 1). In the intermediate range the PDF collapse (blue
curves) and we have an indication of universal behavior.

One particularly interesting region is indicated by the arrow in Fig. 3a. Here,the PDF for
different values of the separation collapse exactly – this corresponds tothe region|∆u| ≪ urms,
r ≪ L where the PDF of velocity differences has the universal scaling form

P(∆u, r) = r−z f (∆u/rz) (4.1)

with the dynamic exponentz. In the asymptotic region−∆u/rz ≫ 1 where∆u< 0 we expect the
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Figure 3: Probability distribution functionsP(∆u, r) as a function of the dimensionless variableφ =

∆u/[〈∆u2〉]1/2 plotted for different values ofr. (a) Collapse of the PDF in the universal regime (blue). In the
energy-containing range (red) the fluctuations become Gaussian – the random forcing dominates – whereas
in the dissipative regime (orange) fluctuations are strongly enhanced. (b) Scaling region for the left tail of
the PDF. The black line indicates the scaling prediction with exponentγ =−4.

algebraic scaling

P(∆u, r) ∝ (∆u)γ , (4.2)

with γ = −4 [25, 26]. This is shown in Fig. 3b where we have plotted the scaling regionof the
left tail of the PDFs. Though our data is not sufficient to clearly extract the scaling exponent, our
results are in agreement with the scaling prediction.

5. Summary

We have demonstrated that lattice simulations can contribute to the understandingof intermit-
tency in turbulence. Our simulations clearly show anomalous scaling for the high order moments
of velocity differences where the exponents are in excellent agreementwith previous estimates
[13]. We want to emphasize that in terms of computational efficiency our method cannot compete
with other conventional time-advancing methods, e.g. pseudo-spectral orfinite-difference methods.
However, lattice simulations may provide a different perspective on the problem of intermittency
where large fluctuations play a dominant role [11, 12].
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