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1. Introduction
The incompressible Navier-Stokes equation
1
dtu+(u,Du)—vD2u:—EDp (1.1)

provides the basis for the description of laminar flow. Hereu(x,t) is the velocity,p = p(x,t) the
pressure, ang the kinematic viscosity. In the limit whene — 0" however, the flow is known to
become highly irregular, turbulence ensues, and one may ask if (1.1)agtillres the full dynam-
ics. For such a state it is certainly necessary to consider a statistical thieersu(x,t) is a random
field in space and time and (1.1) is replaced with an infinite hierarchy of dyaaetciations that
relate the different orders of correlation functions. Usually one haslyoon certain closure as-
sumptions to close this set of equations (see e.g. [1]). One may take armtteehowever, where
one starts from reasonable assumptions on the symmetries of the probleantidalar, assuming
statistical homogeneity, isotropy, and scale-invariance, simple dimensioalgkss yields a tight
prediction for the moments of velocity differences (structure functions)

@Aundré . Zy=n/3, (1.2)

wherel, = (u(x+r)—u(x),e ), and the bar--- denotes spatial averaging. The universality con-
jecture [2] then states that this scaling behavior should hold far from thedasies and indepen-
dent of the mechanisms that generate the flow. Nevertheless, both expeaimdedirect numerical
simulations of (1.1) indicate a violation of this scaling behavior for high-ordements (see e.qg.
[3, 5, 4]). In terms of symmetries this corresponds to the breaking of-goadeance. Highly
erratic, intermittent structures give the dominant contribution to these momemishitrersal sta-
tistical properties of which are still largely unknown. What is the nature egétstructures, and is
it possible to understand their properties from first principles?

Here, the random-force-driven Burgers equation (see [6, 7,r& feview) is taken as a one-
dimensional model

AU+ udu—voiu= f (1.3)

of the Navier-Stokes equation. We artificially generate a turbulent stateéviggithe system by a
self-similar forcing that is white-in-time

(f(k,t) f (K, 1)) = Dolk|P&(k+K)(t —t') . (1.4)

The brackets-:--) denote ensemble averagirigg is a dimensionful parameter, affimeasures
the relative strength of the forcing at different scales. For largeativegvalues of3 the forcing
effectively acts at large scalesL. On the other hand kinematic viscosityprovides a dissipation
scalen, and forv — 0" these two characteristic scales separate. In particulaf3 fer—1 the
interplay of the stochastic forcing and advective term leads to a Kolmogemewgy spectrum
E(k) O |k| %2 in the intermediate range of scales, reminiscent of Navier-Stokes turie(@nto].
The physical picture that one may associate with this scenario is the appearfashocks with
a finite disspative width (see Fig.1). These structures give the domipatrittion to the high
order moments of velocity differences, and leads to a strong form of intenayt{é 1, 12] where

(lAu™ Or n>3. (1.5)
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Figure1: Velocity profileu(x) from a simulation on a 254 1024 (spacex time) lattice, wherexis taken
in units of the spatial lattice side

In view of the well-established anomalous scaling behavior of Burgersilembe [13] and the
physical picture of the underlying mechanisms for intermittency [9, 10, 2] Burgers equation
(1.3) provides an ideal benchmark setting to test new analytical and nadmagthods for Navier-
Stokes turbulence.

2. Functional Integral

The functional integral representation for the random-force-drBergers equation is ob-
tained via the Martin-Siggia-Rose formalism by means of an auxiliary regdaid i [14, 15, 16,
17]. We have the partition function

Z— [ dluid[u]exp(~Su.u} (2.1)

where the actioi§u, u] is given by

S— —i/dtdxu(dtu+ U, U — Va2U) + ;/dtdxdyu(x,t)D(x—y)u(y,t) L2

Here,D(x—Yy) is the spatial part of the two-point correlation function (1.4). Notice, thahis
form the action does not satisfy positivity. To obtain a Gibbs measure thaveaampled by a
Markov chain Monte Carlo (MCMC) algorithm we integrate out the auxiliarigdfi@ his leaves us
with the probability density functional

Plu] = exp{ — % /dtdxdy(dtu+ udsu— voZu)D~(x—y)(du+ udu — vdxzu)} . (2.3

which is the starting point for our investigations.

3. Lattice Theory

The theory is defined by placing the fieldx,t) on the sites of a regular space-time lattice
A, i.e. (x,t) € A. This way, we impose a UV cutoff that eliminates the details of those processes
occurring deep in the dissipative regime. Then, the measure is givelfupy- ) eadu(X,t)



Anomalous scaling in the random-force-driven Burgers ¢igna David Mesterhazy

and the action in (2.3) needs to be discretized appropriately. We repladgriamics (1.3) with a
finite-difference equation with backward-time discretization

O:u+ udku — %(u(t) —u(t—¢€))fu(t—eg)oku(t—e), (3.1)

whereg is the lattice spacing in time direction. This ensures the correct dynamics inrttieuaam
limit [18]. For the advective term we take the anti-symmetric spatial derivative

Oxu — %(u(x+a)—u(x—a)), (3.2)

wherea is the lattice spacing in the spatial direction. With this choice of discretization tite pr
lem is amenable to a local over-relaxation algorithm [19]. Starting from an lisibiafiguration
{u(x,t), (x,t) € A} the set of single-site variables is updated iteratively by the succesgiie ap
cation of a transition probabilitiP(u(x,t) — u'(x,t)). We use the high-qualityanl ux (pseudo)
random number generator [20] which is essential for large-scale latbdations. Specific im-
provements, e.g. Chebyshev acceleration [21] significantly reduaaatization and autocorrela
tion times for the relevant observables.

In our simulations we use periodic boundary conditions in space and edh(let) boundary
conditions in time. That way we eliminate the zero mode from the dynamics. Onetanppbint
is that the probability distribution functional (2.3) defines a stationary poder a system of
infinite extent (in the time direction), i.e.

(U(x,t)u(Xp,t) - - u(Xn,t)) = (U(Xa, t +t ) u(Xe,t +t') - U(Xn, t +17)) . (3.3)

In practice, this condition has to be checked explicitly. We find that for a fagitee-time lattice
this property holds to good approximation in the middle of the configurationsesMbeundary
effects are neglible. This defines the physical region where one macegtrrelation functions.

Another issue is that of Galilean invariance [22, 23]. Both the action (2@}ze measure are
invariant in the continuum under Galilean transformations

X—=X+r, UX) > u(X+r)+v, r=vt. (3.4)

To avoid an overcounting of field configurations one has to performugeafixing in the dynamic
functional (2.3). While gauge fixing is unavoidable for generic correfafimctions this is not so
for velocity differences that are clearly invariant under (3.4).

We want to give a short remark on the computational requirements. Sinaeseva local
over-relaxation algorithm, the long-range correlations imposed by theg(t.4) prohibit any
attempt to parallelize in the spatial direction. This poses a severe problemturnéng to higher
dimensions and it is absolutely necessary to switch to a global, e.g. HybriteNI@amlo algorithm.
With a parallel code (in the time direction) for a 243.024 lattice (space time) our simulations
currently run on up to 512 processors.

4. Results

Structure functions are evaluated over an ensemble of configuratinasaged by the MCMC
algorithm. We measure structure functions in the middle of our configuratioasdbmly chosen
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Figure2: (a) Log-log plot of the structure function of order= 5 with a linear scaling function plotted
for comparison. Vertical bars indicate the region for the&rastion of scaling exponents. Inset shows the
local slopes versus (b) Structure function scaling exponedtsversus orden. The black curve indicates
a bifractal scaling behavior.

starting points. That way it is possible to reduce autocorrelation effeatdfisantly. The main

results of our simulations are shown in Fig. 2a and Fig. 2b. For details oxtifaeton of structure

functions and the scaling spectrum we refer to [24]. Here, as an examepdbow a log-log plot

of the fifth order structure function (see Fig. 2a). The scaling regiole&ly visible, and we have
indicated the region for the extraction of the scaling exponents by two Mditiea. In practice,

we are bound to work at finite viscosity, and at small values of the separaticee the dissipative
regime where the scaling breaks down. For comparison, in the inset veephatted the local

scaling exponents evaluated over three successive points. One rogyizeg that in the scaling
region the values lie on a plateau (as indicated by the horizontal line) whfetedehe scaling

exponent. Applying this procedure to all structure functions of order5 yields the scaling

spectrum shown in Fig. 2b. The black line shows the bifractal scalinggbiea (1.5). Our results

are in good agreement with this prediction and also with previous results Higlharesolution

simulations employing a fast Legendre transform algorithm [13].

We can extract important information on the physical behavior from thiegitity distribu-
tion functions (PDF) of velocity differences’(Au,r). In Fig.3a we show the PDF of velocity
differencesdu = u(x+r) — u(x) for different values of the separatiomplotted as a function of the
dimensionless variablg = Au/[(Au?)]%2. One may clearly recognize the influence of the random
forcing acting at large scales (red) where the fluctuations become i@&auBsr smaller values of
the separation large fluctuations become strongly enhanced by the dyiialmé;orange). In par-
ticular, in the disspative regime (orange), at very small separationg tluesuations are directly
associated with the dissipative shocks (see Fig. 1). In the intermediatettenBDF collapse (blue
curves) and we have an indication of universal behavior.

One particularly interesting region is indicated by the arrow in Fig.3a. HaePDF for
different values of the separation collapse exactly — this corresponitie tieegion|Au| < Urms,

r < L where the PDF of velocity differences has the universal scaling form

P (Du,r) =r*f (Au/r?) (4.1)

with the dynamic exponert In the asymptotic regior-Au/r? > 1 whereAu < 0 we expect the
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Figure 3:  Probability distribution functions?(Au,r) as a function of the dimensionless varialge=
Au/[(Au?)]*2 plotted for different values af. (a) Collapse of the PDF in the universal regime (blue). & th
energy-containing range (red) the fluctuations become &@us- the random forcing dominates — whereas
in the dissipative regime (orange) fluctuations are stpeghanced. (b) Scaling region for the left tail of
the PDF. The black line indicates the scaling predictiomweitponeny = —4.

algebraic scaling
2(bu,r) O (Au)Y (4.2)

with y = —4 [25, 26]. This is shown in Fig. 3b where we have plotted the scaling regfioine
left tail of the PDFs. Though our data is not sufficient to clearly extraeisttaling exponent, our
results are in agreement with the scaling prediction.

5. Summary

We have demonstrated that lattice simulations can contribute to the understahiditegmit-
tency in turbulence. Our simulations clearly show anomalous scaling for theohier moments
of velocity differences where the exponents are in excellent agreemignprevious estimates
[13]. We want to emphasize that in terms of computational efficiency our rdetfwonot compete
with other conventional time-advancing methods, e.g. pseudo-spediratexdifference methods.
However, lattice simulations may provide a different perspective on thHalgaroof intermittency
where large fluctuations play a dominant role [11, 12].
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