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As a first step towards establishing a chiral perturbation theory for overlap fermions, we investi-
gate whether there are any ambiguities in the expression for the pion mass resulting from multiple
chiral symmetries. The concern is that, calculating the conserved current for Ginsparg Wilson
chiral symmetries in the usual way, different expressions of the chiral symmetries lead to differ-
ent currents. This implies an ambiguity in the definition of the pion and pion decay constant for
all Ginsparg-Wilson expressions of the Dirac operator, including the overlap operator. We use a
renormalisation group mapping procedure to consider local chiral symmetry transformations for
a continuum Ginsparg-Wilson “Dirac-operator." We find that this naturally leads to an expres-
sion for the conserved current that differs from the standard expression by cut-off artefacts, but
is independent of which of the Ginsparg-Wilson symmetries is chosen. We recover the standard
expressions for the massive Dirac operator, propagator, and chiral condensate. With this in place,
we proceed to calculate the pion mass in the mapped theory as a function of the quark mass, and
discover a unique expression for F and my, recovering the usual Gell-Mann-Oakes-Renner rela-
tion, baring the substitution of the chiral condensate with its modified value. We hypothesise that
the argument can be carried directly over to the lattice theory.
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1. Introduction

This project is the start of an attempt to establish an overlap chiral perturbation theory for over-
lap fermions. First, we need to understand chiral symmetry on the lattice. The challenge is that
there is not just one, but an infinite number of chiral symmetries for Ginsparg-Wilson fermions [1].
These symmetries all agree in the continuum limit, but at non-zero lattice spacing, using standard
methods, give non-equivalent conserved currents. This suggests an non-unique definition of the
pion, pion decay constant and so on, possibly leading to different measurements of the same quan-
tity on the lattice theory. Although these differences can just be considered lattice artefacts, it is
troubling because generally perceived wisdom states that the lattice theory itself is a well defined
quantum field theory not only in the continuum limit, and it has been claimed that these ambigui-
ties might imply some serious fundamental problem with Quantum Chromodynamics on the lattice.
The goal of this work is to gain a deeper understanding of these issues in the context of the simplest
calculation where it might be expected to have an effect: the Gell-Mann-Oakes-Renner relation be-
tween the pion mass and the quark mass. We show that the ambiguities arise due to a sub-optimal
expression for the conserved current, and that it is possible to formulate a Ginsparg-Wilson theory
without this difficulty.

As we are interested only in the structure of the Ginsparg-Wilson chiral symmetry, the quali-
tative results of this work should not depend strongly on the choice of the Ginsparg-Wilson Dirac
operator. The bulk of this work uses a continuum expression of the Ginsparg-Wilson Dirac oper-
ator, Dg, as this is the simplest choice using our methods. We will consider the extension to the
lattice theory [2] at the end of this work and in more detail in a subsequent work.
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Dy is the standard Continuum Dirac operator (Doy = e~/ @Ay gV (i8] 4™ )y is dimen-
sional parameter which we can interpret as an inverse cut-off. a — 0 corresponds to Dg — Dy. This
operator satisfies the standard Ginsparg-Wilson chiral symmetries.

2. Ginsparg-Wilson mappings and chiral symmetries

The notation of this section follows [3].
We have a partition function (for simplicity, we neglect the Yang-Mills term).

Z= / dydydUe VPV, 2.1
We construct a new partition function using the Ginsparg-Wilson mapping procedure

7= /dU/deWe*VoDOWO/dll,ldwle(vﬁ%é)a(%*E‘lfo)’ (2.2)

where B, B and « are invertible operators acting in the same Hilbert space as the Dirac opera-
tors. In a discrete theory, these mappings would therefore represent square matrices: we are not
blocking or averaging to, for example, reduce from the continuum to the lattice, but constructing
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a different expression of the Dirac operator in the same space-time. These mappings are integral
transformations of the fields

(BY)a(x) = / 4 Bap(x,2' )y (), 2.3)
for coordinates x and spinor indices a and b. Throughout this work, I will only need to consider
invertible mappings, where the inverse is defined as

BV = [ d¥ Bl () 2.4)
The kernel B,y (x,x’) satisfies
/ A% By (6, Bpo (") = 5 (x — ") S, 2.5)

and we subsequently write B as B~!. These mappings are functions of the gauge fields and contain
a non-trivial spinor structure. We then integrate over the fields yy to give a new Lagrangian,
A = Y,Dyy; + trlog[BB], where we absorb trlog[BB] into the gauge action. In practice, there
will be a family of mapping operators which generate the same Dirac operator D, which we
parametrise as B, B and oM. We will consider those blockings where o« — oo1l. The mapped
theory will then obey a Ginsparg-Wilson chiral symmetry defined by

0=2"D; + D" D, =B DoB™
B(n) :Da(n+1)/2D5n+1)/2 3™ :Dgl—n)/ZDg(l—n)/Z‘
n" =BV B = (1-2)" s R =(B") BT = 5(1-2D)"T, 26)
Locality of yén) and ylgn) requires an odd integer value of the parameter 7). The choice of the chiral

symmetry is equivalent to the choice of B and B and therefore the choice of 1.

The mappings B and B are analytic around p, = 0, the only zero in Dy and D;. There are
difficulties for UV momentum, i.e. infinite eigenvalues of Dy or eigenvalues 1 of D, caused
ultimately because we are mapping between a regulated theory and an unregulated unrenormalised
continuum theory: we expect divergences in the UV. In this work, we shall neglect these difficulties
for simplicity. In a complete calculatic{m}, which we will give in a fuller paper, this issue is resolved

ag

by using a regulated Dirac operator, D, as the basis for the mapping rather than Dy. This requires

el

symmetry for D;. Demanding self-consistency, the correct limit as a — a, and independence of

using the Ginsparg-Wilson chiral symmetry for DE? in the derivation of the Ginsparg-Wilson chiral

the inverse cut-off a; restricts the Ginsparg-Wilson chiral symmetry to the expressions derived here
from a naive use of the continuum operator.

3. Propagator renormalisation

2-point functions can be calculated from the generating functional
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Therefore, the propagator, S in the mapped theory is
s =BMp B, (3.2)

For example, if D| = Dg, then Dy = Dg/(1 —aDg) and B"BM = Dgr/Do = 1 —aDg. This leads
to the standard O(a) improvement factor, 1 — aD, required to maintain the chiral symmetry of the
Ginsparg-Wilson propagator [4].

4. Conserved Current

The conserved current in the continuum theory is found by applying an infinitesimal local
chiral symmetry transformation,

Vo = Wo(1 +ie(x)ys) Vo — (1+ie(x)75) %o 4.1

which gives
I = 5 PO+ E))Do(1 -+ () (42
JH(x) =) 57 y(). (4.3)

In the mapped theory, the chiral symmetry transformation is constructed by applying l//(gn) =

By and gV = Wgn)g(n):

W&n) _}WET])(I_|_I-E(Tl)g(x)(E(n))flg(n),},s(g(n))fl):Wgn)(l+i££n)y£n))
i S (14i(BM) e (x)BMW (BM)~ys B )y = (14 igfM iV )y (4.4)

Note that €z and & are now non-degenerate: this is the principle difference between this and
previous approaches to construct the current in Ginsparg-Wilson theories. sl(en) for different ns
differ by O(a) eftects. The choice of 81(;7) is fixed for each choice of chiral symmetry. It is now an

easy matter to calculate the conserved current,

d _
Tu) =355 (P01 e "Dy+ D1 1)y )
d _
—_ 9 (ympmn-1gmgh () ()
PEITES) (1;/ (B')"'BB vy, dueysB g ) (4.5)

Given that y(m) = (Bm))~1(BM))y (M) and §m) = W("])(E(m))_l (E(nz)), this expression is in-
dependent of 1, and which of the chiral symmetries is used. The expectation value for the current
then becomes the simple expression,

0 1-D
(Ju(x)) = <88He(x)tr D yﬂy58ue>. (4.6)

The standard n-dependant expression [5] is derived from gﬂ 3 Wsn) (yén) Sél)Dl +Dyel }/Ign) ) l//](n).

In the context of the mapping formulation, this is unnatural as it mixes different 1s, although it only

differs from the expression recommended here by O(a) artefacts.
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5. Gell-Mann Oakes Renner relation

The current is the generator of the pion field

Fﬂpueipx

OH(xX)|m) = i——————. (5.1)
O lm) = s
Suppose that the symmetry breaking term in the action is
Hy =Y u,®,, (52)
n
where @ is some field which transforms under the symmetry as [T, ®,] = —1¢, ®,,,u, is a coef-

ficient, and 7 is the generator of an appropriate representation of the chiral symmetry. The mass
matrix for the Goldstone Bosons of a spontaneously broken broken symmetry is [6]

M}, = —F,'F, ' ([T [T" . H\]])o, (5.3)

with F, = F;8,p. The fermionic Lagrangian for the Ginsparg-Wilson mapped theory for two quark
flavours is

2 =Py +B VBV + 3V D)+ BB gy (5.4)

With BB — (1 — D) this gives the conventional form for the massive Ginsparg-Wilson Dirac op-
erator: Di[p] = Dy + u(1 — D). The symmetry breaking terms in the Lagrangian can be written
as

Hy = D (1, + 1) + B (1, — 1a), (5.5)

where the chiral 4 vectors are are given in terms of the iso-spin Pauli matrices t* = 6¢/2

D¢ =igfstq Pt =

_ R _ 1
3 =griq &' =—ig9sq g= "), (5.6)
2 Yy

and J5 and 1 are operators which commute with r%. In the standard theory, these are just 5 and the
identity operator. In the mapped theory, a natural possibility is to use

#m —B 50 i =g"pm, (5.7)

so the symmetry breaking term in the Lagrangian (5.4) agrees with equation (5.5). This gives

?A’SM)?’I(en) zyé")fg(") —1i
I =n"1= %", (5.8)

and the modified chiral vectors satisfy the usual continuum transformation law

X9, ®") = - §e* X3’ = 5°P"

X9, @4 =" X4, ") =3 (5.9)
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We then can use a standard calculation to recover

mE = —4 (1, + 1a) (D)o /F2. (5.10)
Therefore, if the chiral four vectors and currents are local and well defined, the GMOR relation is
satisfied in the mapped theory. We only need to modify the definition of (®*) and F;.
If D, is the regulated continuum operator Dg, we obtain the 1-independent expressions

1
' =ig)" (1-De)1s(1-2D) 2'1°q" &* =2g\" (1~ De)g”

o 1 10
) :qgn)t (I_DR)q(T]) (I)4:—liqgn)(l—DR)’}/5(1—2DR)1J£nqgn) (5.11)

The chiral condensate, extracted from ®*, is in agreement with previous results [7].

6. Application to the lattice overlap operator

Clearly, carrying this framework to the lattice overlap operator contains a number of complica-
tions. Firstly, the lattice overlap operator does not commute with the continuum overlap operator;
secondly the naive rectangular blockings from the continuum to the lattice are not invertible; thirdly,
we need to ensure that we correctly regulate the 1/(1 — D) term to avoid complications with the
D =1 eigenvalues. Of these, the second complication is at first glance the largest challenge. It can
be resolved using a two step mapping/blocking procedure. In the first step, a continuum Dirac op-
erator is constructed which has the lattice operator embedded within it. Space time is decomposed
into regions around the lattice sites L and the bulk B. The Dirac operator is constructed so that the
LL interactions resemble that of the lattice theory, while there will also be BB and LB interactions.
As Dy and Dy are in the same Hilbert space, a mapping rather than blocking or averaging proce-
dure is required to construct D from Dy, and there is no obvious reason to suppose that there is not
some suitable choice of D; which allows invertible mappings. One possibility is explored in [3].
The construction of the chiral symmetry, chiral condensate, and currents then proceeds as outlined
above. A second blocking transformation is used to extract the lattice operator from D;. If this
blocking transformation (which we may define in terms of operators R and R, so that Y, = Ry
and ¥, = YR) commutes with ¥5 and the eigenvalues of RR are one (corresponding to the lattice
sites) or zero (corresponding to the bulk), this will leave the form of the chiral symmetry intact and
all the conclusions of this work unchanged.

We therefore expect that the results of this work may also be extended to the lattice the-
ory (except for modifications to to additional dependence on DD in the mapping). In particular,
the conserved current and chiral four vectors ® and ® will be independent of the choice of the
Ginsparg-Wilson chiral symmetry given that the fermion fields are also dependent on 1. If this
holds, then there would be no ambiguity when the lattice theory is correctly formulated, and no
reason to suspect that there is a disease in the lattice formulation caused by the infinite group of
chiral symmetries.

7. Conclusions

By using a RG mapping construction, we have reconstructed the standard form for the mas-
sive Dirac operator, chiral condensate and quark propagator for a Ginsparg-Wilson Dirac operator,



Local Ginsparg-Wilson symmetry Nigel Cundy

and shown that the same observables are obtained regardless of the choice of chiral symmetry (ex-
pressed in terms of choosing the parameter 17). The standard conserved current is not independent
of 1, however we have shown that the local current is independent of 11 and is derived naturally
from this procedure. With this machinery in place, it is straight forward to repeat the continuum
derivation of the Gell-Mann-Oakes-Renner relation. This leads to a unique lattice definition of
T, mz, fr etc., and we do not see that the multiple Ginsparg-Wilson will have any effect on the
physics of the theory even an non-zero inverse cut-off. Although our construction used a particular
continuum Dirac operator, we expect that the results will carry over to any Ginsparg-Wilson Dirac
operator, including the lattice overlap operator, as will be discussed in a forthcoming paper.
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