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1. Introduction

In [1], Adams introduced a new definition of topological charge for latti@ege fields based
on the spectral flow of a hermitian operator related to the staggered Dieaatop Some numerical
results were obtained there for synthetic configurations in Bhn&J@l) model.

Here we present preliminahynumerical results in realistic Dtpure gaugesU (3) configura-
tions, confirming the good properties of Adams’ definition, and the agreeofid¢ime index calcu-
lated with the new definition and by counting the number of low-lying modes of Highlity.

2. Definition of the topological charge
The hermitian operator introduced in [1] is defined by
Hst(m) =iDg —ml5 (21)

whereD is the massless staggered Dirac operatorfand the taste-singlet staggergg[3]. This
operator is hermitian, and we can study its spectral ffoiam). The would-be zero modes By
are now identified with the eigenmodes for which the corresponding eiyenflaw A (m) crosses
zero at low values ofn, and the chirality of any such mode equals (with our conventions) the sign
of the slope of the crossing [1].

For the most part we work with the highly improved Dirac operator (HISQ) #though
for comparison we will also show some results corresponding to the uniegr@vlink) Dirac
operator.

To compare with previous work, we also calculate the low-lying modes of th€@HDBac
operator atn = 0, and identify the would-be zero modes with the high taste-singlet chirality one
[5, 6].

3. Results

For our numerical calculations we use configurations from an ensemtpezdivel Symanzik
and tadpole improved quenched QCD with a lattice spacing of approxima@aly @m [5].

The operatoHg (M) is hermitian, and its low-lying eigenmodes are easily calculated numeri-
cally with standard methods. Its spectrum has the exact symrhéatmy<> —A (—m), therefore we
only show results fom < 0. An equal number of crossings, with identical slope, will be present
form> 0.

We show in figures 1, 2 and 3 the results obtained for three configurat@nssponding (a
posteriori), to topological charge 0, -1, and 2. We can clearly see tte@mgnt between both
definitions of the topological charge, with the expect&€high-chirality modes, and@ crossings
at lowm.

In order for the topological charge to be well defined by the spectrai fitbis necessary
that the crossings at low values of the mass and other possible crossiaggea values of the
mass are well separated. We show in figure 4 the spectral flow for thegamge configuration

IMore complete results will be presented in [2].
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Figure 1: Top left figure: taste-singlet chirality for the low-lyingades of the HISQ Dirac operator (only
half of the modes are shown, as the other half is exactly degés due to an exact symmetry of the
Dirac action.) Top right and bottom figures: spectral flow tloe low-lying modes of the corresponding
hermitian operatofg (m), for various ranges af (we only show the ranga < 0, due to the exact symmetry
A(m) < —A(—m)). This is for a gauge configuration wit = 0.

corresponding t®@ = —1, but with a much larger mass range. We see that there is no sign of any
other crossing until a very large value wf of order&’(200). We conclude that, at least at this
lattice spacing and for the HISQ Dirac operator, there is a very goodaapabetween low and
high mass crossings.

In figure 5 we compare the spectral flow coming from the HISQ and the IDiirdc operators,
on the same gauge field configuration, of topological charge -1. Botls #fgree on the value of
the topological charge of the configuration, but the crossings cannelipg to HISQ take place at a
much smaller value af. This is according to expectations, because in the continuum limit the only
possible crossing is ab = 0, and we expect the HISQ operator to be much closer to the continuum
than the 1-link operator. Another manifestation of this is the fact that theféddidegeneracy of
the continuum theory is also much more closely approximated by the HISQ adtieno its much
reduced taste-symmetry breaking.

The definition of topological charge through the identification of the highatity, low-lying
modes of the Dirac operator works well in practice, and any ambiguitiescaeeted to vanish in
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Figure 2: Top left figure: taste-singlet chirality for the low-lyingodes of the HISQ Dirac operator. Top
right and bottom figures: spectral flow for the low-lying med# the corresponding hermitian operator
Hs (m), for various ranges ah. This is for a gauge configuration wip= —1.

the continuum limit ag?, wherea denotes the lattice spacing. Nevertheless, at finite lattice spacing
there are a few configurations for which the classification in a topologezbs is not clear-cut

[5]. In figure 6 we show the chiralities and spectral flow for one of thosefigurations. The
high-chirality criterion would indeed be ambiguous applied to this configuraliba spectral flow
criterion is always well-definédand would assign a topological charge 0 to this configuration. We
can see, however, that this is the result of having pairs of crossing®ppibsite slopes, instead of
not having any crossing (as is the case in figure 1 for the configuraitbrQ= 0).

4. Conclusions and Outlook

We have presented preliminary numerical evidence that Adams’ definitiore abgiological
charge using the staggered Dirac operator works as expected listic§guenchedBJ (3) gauge
fields. The crossings corresponding to low and high-lying modes aresepdirated, and there-
fore the topological charge of a configuration is unambiguously defeezh in cases which are
ambiguous using other definitions.

2At least as long as there is a clear-cut separation between low-madi@ighrmodes.
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HISQ chirality, Q = +2 HISQ spectral flow, Q = +2
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Figure 3: Top left figure: taste-singlet chirality for the low-lyingodes of the HISQ Dirac operator. Top
right and bottom figures: spectral flow for the low-lying med# the corresponding hermitian operator
Hs (m), for various ranges ah. This is for a gauge configuration wip= +2.

It would be interesting to compare the staggered Dirac spectral flow withsina #Vilson
Dirac spectral flow on the same gauge configurations, as well as stuithgrdependence on the
lattice spacing [2].

Inspired by this definition of the spectral flow, one can define an ovepepator starting with
a staggered kernel, instead of the usual Wilson one [7], producinga operator representing
two tastes of fermions. A similar construction can be carried out to furtiderceethe degeneracy
and produce a one-flavour overlap operator [8]. The question neséther this construction is
numerically advantageous as compared with the usual overlap constrit@iminary results are
presented in [9].
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hisq spectral flow, Q = -1
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Figure 4: Spectral flow corresponding to the HISQ Dirac operator onrgelanass range, for a gauge
configuration withQ = —1.
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Spectral flow, Q = -1
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Figure 5: The spectral flow corresponding to the HISQ and the 1-linlaDibperators, on the same gauge

field configuration.

HISQ chirality, Q = 0
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Figure 6: Chiralities and HISQ spectral flow for a configuration withanbiguous topological charge, as

determined by the chiralities.



