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1. Introduction and M otivation

The low-lying spectrum of the continuum Dirac operator hasrbdescribed successfully in
terms of chiral Lagrangians or Random Matrix Theory [1, Z}eTeason for this success is that the
smallest eigenvalues are of ordeivl which is deep inside the-domain. In this domain the static
part of the chiral Lagrangian, which is equivalent to Randdatrix Theory, factorizes from the
partition function, and determines properties of the lgirg Dirac eigenvalues. In this lecture we
discuss the extension of these results to nonzero latteergp We can distinguish two different
types of discretization effects: those that do not affeetsiimmetries of the Dirac operator and
those that do affect its symmetries. In the first case, digat@on effects can be absorbed into a
redefinition of the low-energy constants. In the second,¢hedaliscretization errors take us outside
the universality class which requires additional termshie thiral Lagrangian. The two main
discretization schemes are staggered fermions and Wigsamidns and both break the symmetries
of the continuum Dirac operator. In this talk we will discussent results [3, 4, 5, 6] for the the
Wilson Dirac operator including its dependence on the togichl index and the number of flavors.
The confirmation of these results by lattice simulationsB]J4vill be discussed elsewhere in these
Proceedings. For recent progress on the staggered Diraatopsee [9].

We will consider discretization effects of the Wilson Dirgerator

1 * 1 *

2

Because of itgs Hermiticity it is advantageous to analyze the spectrum efifermitian Dirac
operator [10, 11, 12, 13]

Ds = y5(Dw +m) = D{. (1.2)

Since Dy is nonhermitian, its eigenvalues are complex, but becatiseegs Hermiticity, they
occur in complex conjugate pairs or are real. Therefore timeptex eigenvalues can collide with
the real axis and turn into a pair of real eigenvalues. Thd#fisrent from QCD at nonzero chemical
potential [14] where the nonzero Dirac eigenvalues are éexrand occur in pairs of opposite sign.
Then both their real and imaginary parts have to vanish faimtp collide with the real axis.

In this talk we report on results for discretization effegtsspectra of the Wilson Dirac opera-
tor of QCD withdynamical quarks. A direct evaluation of the generating function impticated,
but using a diffusion method [15] we obtain compact expmssfor correlation functions of Dirac
eigenvalues which we here further simplified by exploitimuaderlying Pfaffian structure [16].

We start from a chiral Lagrangian, but our results can alsddsied from the corresponding
chiral Random Matrix Theory [3, 4]. Recently, the joint eigelue distribution of both the Wilson
Dirac operator [17] and the hermitian Wilson Dirac opergi@] have been obtained from RMT.

2. Spectrum of the Dirac Operator
In order to access the spectrumdf, we introduce an axial mags

detDy + m+ y2z) = det(y5(Dw + m) + 2). (2.2)
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Figure1: Spectral flow of eigenvalues &fs versus the quark mass

The low-energy limit of the corresponding partition furctiis given by a chiral Lagrangian that
up to low energy constants is uniquely determined by symeseft9, 20, 21]

Z(m,za) = %mZTr(U +U")+ %zZTr(u —U") —a®WTr(U2+U~2). (2.2)

In the microscopic domain, where the combinatioms, 2V anda?V are kept fixed in the thermo-
dynamic limit, them, z anda-dependence of the partition function resides in its zeronertum
part that factorizes from the nonzero momentum part [3]

z!, (mza) = / dU det’U esM™VETrU+U N+ 3STr(U-U") -V WeTr(U2+U-2). 2.3)

UeU(Nf)

To this order the chiral Lagrangian also containg®Ws[Tr(U +U™)]2 — a?W[Tr(U —U™))? but
they can be added to the mass term after linearizing the esju@rthe expense of a Gaussian
integral and will not be considered below.

Since small Dirac eigenvalues are very sensitive to thexinde of the Dirac operator we
will work at fixed v. This index is determined from the spectral flow of the eigdues ofDs(m)
[22, 23] (see Fig. 1). At the crossing pointg, with the real axis we have (for smal] the physical
part of the lattice Dirac spectrum can be separated fromrbpéysical part)

v(Dw+m)p=0 — Dw@=-m. (2.4)

Note that multiple crossings may occur. Therefore the nurabeeal eigenvalues ddy, is at least
equal to its index. The total number of flow lines with a net fexoss the real axis is a topological
invariant of the Dirac operator. It can be written as a sunt eigenvalues oDs [22]

dAS(m)

- Sign( > =Y sign((@lys|@))- (2.5)
rm)\s(zm():o dm  Jem, Z (| ys|@))

The 8-dependence of the QCD patrtition function is given by

Zn(mza 8) = Y €9z (m za). (2.6)
Vv
In the continuum limit, because of the anomaly, the fact@(ie@) can be written as the Jacobian
of an axial transformation on the quark fields. At nonzathe natural extension is (See [24].)
m— e®%/MNim g, g9%/Nig (2.7)

As is the case in the continuum limit, the partition functianfixedv is defined by inverting the
decomposition (2.6), which also can be applied to the chiagkangian

Zy.(mza) = %T/dee“’ez,\,f(m,z;a, 0), (2.8)
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Figure 2: The spectral density of(Dw + m) for m= 3, v = 0 anda = 0 (right) anda = 0.25 (left) for
=0,Nf =1N; =2.

where thef-dependence of the chiral Lagrangian is induced by thefvemstion (2.7).
The generating functions for the Wilson Dirac spectrum avergby [3]

detDw + m+ y5%)
del(DW+m+ VE,Z(( .

Zy, 4 pip(M %, 3 @) = <def\lf (Dw+m) |_|

The resolventp = 1) and the spectral density are given by
d

G\, +y1(zma) = I|m dzZN 1p(mzZ;a)

1
. PE(A%ma) = —ImG’(zma)|

Z=A5"

7=z
For z < Agcp the zdependence of the generating function is given by a chiegjrangian that

is uniquely determined by symmetries that are compatiblé e convergence of the bosonic
integrals. In the microscopic domain the generating famcteduces to the graded integral [3, 2]

1 Ty il t7)_i2q2 2
z’ m,z a 7/ dU Sdet (U )d 2™V ETr(U-UT)+iZVETr((U+UTE) 22V Tr(U?4+U %)
N+ 212 )= Zy, (m;a) Jueei (N +1)1) ) (2-9)

where,{3 = diag(0,---,0,z 7). The transformatiod — iU is required to get convergent integrals
in the noncompact sector f¥g > O (for which the Aoki phase [25] can occur).

A direct evaluation of the integrals over the supergroupobess very laborious foNs > 1
but they still can be worked out for one flavor [5, 26]. HowevYer degenerate quark masses the
expressions can be simplified by starting from the identity

)

eaZTrg(UZJrUTz) _ 672Nfa2+a2Trg(U+U* szfa / doe Trgaz/16a2+'2Trga(u+u*)

whereo is an(Ns + p|p) graded “Hermitian” matrix. In a diagonal representatiomdhe partition
function can be expressed in terms of an integral over shifigark masses. The result for the
resolvent is given by [6]

l 2
Ghsan(mze) = W/ dS)(S)e IS 2 sdet (S )z, 4 ({1/mP ~ Ehia=0),
N @. 10)

whereJ(S) is the Jacobian of transformirgto the diagonal representati@
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Figure 3: Spectral density for two flavors with quark masg2 = 3 for v = 0 (left) andv = 2 (right). We
show the result foa = 0 (black) andaWs/V = 0.25 (red).

2.1 Effect of Light Flavors

Fora = 0 the spectral density g6(Dw + m) is obtained by a simple variable transformation
of the spectral densitpV(x) of Dw: pY(x) = x/vx2 —m2p" (V2 —m2)6(|x| — |m|) (See Fig. 2
(right)). Fora+ 0 the result for the spectral density follows from the resatv(2.10) (see Fig. 2
(left)). Although, forN; = 1 andNs = 2 the integrals in (2.10) can still be evaluated directly, it
becomes computationally expensive. However, because ohderlying Pfaffian structure [16],
the integrals can be written as the sum of products of two aeddamensional integrals.

The three dimensional integral for one flavor resolvent@Rchn be rewritten as

Z!(z,m;a)
/(0. ma)

2y, (zma)

GV . — GV . GV O .
2‘1(27 m! a) 1|1(Z727m1a)+ 1|1( 7Z7 m’ a) ZX(O, m,a) 9

—23(0,zm;a) (2.11)

where the first term is the quenched resolv@m(z, z,m;a) with

—1 [ dsdt i v
G\1/|1(217 Z,ma) = o [(s+iz)?+(1-2)?) /162 (m—is)

T 16ma2 ) t—is ﬁifll((mz+32)l/27(m2_t2)1/2).

The various partition functions that enter in the exprassite given by

1 5 1o (MR — t2)V/2

Zyy(zma) = \/ﬁ/dt g (t-27/16x ﬁKv((mz—tz)l/Z%
1 2162 (1IS—M)Y

Zi(ama) = m/dse(%m e (r5:28+5r2))v/2|v((m2+52)1/2)7
1

Z3(z,22,ma) =

Tore? / ds;ds, (is; — isp)elio 2 (%218 (js) —m)V(is,—m)”  (2.12)
xZ3((mP + Y2, (P + 5)?),

2a063) = L0 0+ a0 Z(cy) = LB Xyt 091,

Likewise the four-dimensional integral (2.10) for tNe = 2 resolvent be re-expressed as

Gyi(zma) (2.13)

idGyy1 (21,2 m;a) zy(0,zma) . G11(0,2ma) dzy(z,z m;a)
dz; 20 Zz(ma) Zy(m;a) dz

)
71=0

= Gyu(zzma) -
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where
Zg(m’ a) 16a2 /dS]_dSQ ISI_ISQ) [(lsl 71)%+(is2—22)?] /1682 (|S]_ m) (|SQ m)
xZY(mP+$2)Y2 (mP + 2)1/2). (2.14)

These simplified expressions for the unquenched resolbawes not been presented previously.

2.2 Density of Real Eigenvalues

The Wilson Dirac operator has as leasteal eigenvalues in the physical sector of the Dirac
spectrum. Because the eigenvalues of the Wilson Dirac tipevacur in complex conjugate pairs,
additional real eigenvalues may be produced when a paideslivith the real axis. Depending on
the expectation value g the density of the real eigenvalues may be decomposed as [17]

Prea(A) = o AY) + o’ (AY). (2.15)

The distribution of the chiralities over real part of the sjpem of Dy,

py (AY) =< )3 5(/\W+Akw)sign(<k!vs!k>)> =p'AY) —pr(AY), (2.16)
AV ER v
was derived from the chiral Lagrangian (2.9) both quenct&#] and with dynamical quarks
[5, 6]. We have that

py(AY) < pa(AY) and / dAWpy(AW) = < )3 sign<<kr»srk>>> =v.  (217)
AN ER v
The expression fop)‘(’()\W) can again be simplified to at most two-dimensional integrals
The calculation of the density of real eigenvalues is moregcated. However, starting from
a random matrix theory for the Wilson Dirac operator, it wasgible to derive the joint eigenvalue
probability density oDy [17] with the total number of real eigenvalues given by [17], 2

[ Yy v+ 0((vad) )

3. Conclusions

We have obtained the lattice spacing dependence of the sompec spectral density and
all spectral correlators of the Hermitian Wilson Dirac ader with degenerate dynamical quark
masses. This makes it possible to extract the low-energstantV\g from the distribution of the
smallest eigenvalues. It should satisfy the constrainttdug-Hermiticity thatWs > 0 (see also
the recent discussion in [28]). These results can be exterdimclude the two other low-energy
constants to this order. Our results also explain the @&atisult that the width of the distribution
of the smallest eigenvalue scalesads/V. More results can be obtained using a random matrix
formulation of the chiral Lagrangian. Then powerful randomatrix methods make it possible to
obtain all spectral correlation functions Bfy in the microscopic domain.
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