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1. Introduction

Glueballs, as the bound states of gluons predicted by quantum chromodynamics (QCD), are
still challenging targets both for experimental and theoretical studies. A clue to the existence of a
scalar glueball is that there are ten scalar mesons, such asK∗(1430), a0(1450) and three isoscalars
f0(1370), f0(1500), and f0(1710), which are close in mass and can be sorted into aSU(3) flavor
nonet and a glueball. Quenched lattice QCD studies estimate that the lowest-lying glueballs have
masses ranging from 1-3 GeV [1, 2, 3] such that the radiativeJ/ψ decay is commonly thought to
be the ideal hunting ground for glueballs for the abundance of gluons in the decay products. The
width of J/ψ radiative decay to a glueball can be expressed as

Γ(J/ψ → γG) =
∫

dΩq
1

32π2

|~q|
M2

J/ψ

1
3 ∑

r1,r2,rγ

∣∣Mr1,r2,rγ

∣∣2 , (1.1)

where~q is the decay momentum,MJ/ψ the mass ofJ/ψ, Mr1,r2,rγ the transition amplitude with
r1, r2, rγ the polarizations ofJ/ψ, the glueball and the photon, respectively. The major task in
theory is the calculation of the transition amplitude. There have been several studies on the radiative
productions rate of the scalar glueball based on the tree-level perturbative QCD approach and the
dispersion relation method [4, 5, 6, 7, 8], but with theoretical uncertainties.

In constrast, lattice QCD can be a theoretically cleaner play ground. To the lowest order of
QED, the amplitudeM is expressed explicitly as

Mr1,r2,rγ = ε∗µ(~q, rγ)〈G(~p′, r2)| jµ(0)|J/ψ(~p, r1)〉, (1.2)

whereε∗µ(~q, rγ) is the polarization vector of the photon, and〈G(~p′, r2)| jµ(0)|J/ψ(~p, r1)〉 the on-
shell matrix elements of the electromagnetic current between the glueball andJ/ψ, which can
be derived directly from the lattice QCD calculation of the related three-point functions. As an
exploratory study, in this work, we focus on the calculation for the scalar glueball.

2. Numerical details

We use the quenched approximation in this study. The gauge configurations are generated
by the tadpole improved gauge action [1] on anisotropic lattices with the temporal lattice much
finer than the spatial lattice, say,ξ = as/at À 1, whereas and at are the spatial and temporal
lattice spacing, respectively. Each configuration is separated by 500 heat-bath updating sweeps to
avoid the autocorrelation. The much finer lattice in the temporal direction gives a high resolution to
hadron correlation functions, such that masses of heavy particles can be tackled on relatively coarse
lattices. The calculations are carried out on two anisotropic lattices, say,L3×T = 83× 96 and
123×144. The relevant input parameters are listed in Table1, whereas’s are determined fromr−1

0 =
410(20) MeV. For fermions we use the tadpole improved clover action for anisotropic lattices [9].
The parameters in the action are tuned carefully by requiring that the physical dispersion relations
of vector and pseudoscalar mesons are correctly reproduced at each bare quark mass [10]. The
bare charm quark masses at differentβ are determined by the physical mass ofJ/ψ, mJ/ψ = 3.097
GeV.
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Table 1: The input parameters for the calculation. Values for the couplingβ , anisotropyξ , the lattice
spacingas, lattice size, and the number of measurements are listed.

β ξ as(fm) Las(fm) L3×T Ncon f

2.4 5 0.222(2) 1.78 83×96 5000
2.8 5 0.138(1) 1.66 123×144 5000
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Figure 1: The effective energy plot for theA++
1 glueball with different spatial momenta. From top to bottom

are the plateaus for momentum modes,~p = 2π~n/L, with ~n = (2,2,2), (2,2,1), (2,2,0), (2,1,1), (2,1,0),
(2,0,0), (1,1,1), (1,1,0), (1,0,0), and(0,0,0).

One of the key points is the construction of the interpolating field operator which couples dom-
inantly to the scalar glueball. For this we adopt the variational method along with the single-link
and double-link smearing schemes [2, 3]. More specifically, since the irreducible representation
A++

1 of lattice symmetry groupO gives the right quantum numberJPC = 0++ in the continuum
limit, we construct anA++

1 operator set{φα ,α = 1,2, . . . ,24} of 24 different gluonic operators.
Through the Fourier transformation,

φα(~p, t) = ∑
~x

φα(~x, t)e−i~p·~x, (2.1)

we obtain the operator set{φα(~p, t),α = 1,2, . . . ,24} which couples to aA++
1 glueball state with

the definite momentum~p. For each~p, by solving the generalized eigenvalue problem,

C̃(tD)v(R) = e−tDm̃(tD)C̃(0)v(R), (2.2)

at tD = 1, whereC̃(t) is the correlation matrix of the operator set,

C̃αβ (t) =
1
Nt

∑
τ
〈0|φα(~p, t + τ)φ†

β (~p,τ)|0〉, (2.3)

we obtain an optimal combination of the set of operators,Φ(~p, t) = ∑vαφα(~p, t), which overlaps
most to the ground state,

C(~p, t) =
1
T ∑

τ
〈Φ(~p, t + τ)Φ†(~p,τ)〉 ≈ |〈0|Φ(~p,0)|S(~p)〉|2

2ESV3
e−ESt ≈ e−ESt , (2.4)
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where the normalizationC(~p,0) = 1 is also used. This is actually the case thatC(t) can be well
described by a single exponential,C(t) = We−Et, with W’s usually deviating from one by few
percents. Figure1 shows the effective energy plateaus of theA++

1 glueball for typical momentum
modes, where one can see that the plateaus start even from thet = 1.

The other key point of this work is the large statistics. 5000 configurations are generated for
both lattice systems. In order to increase the statistics more, for each configuration, we calculateT
charm quark propagatorsSF(~x, t;~0,τ) by setting point source on each time-sliceτ, which permit us
to average over the temporal direction when calculating the three-point functions. Therefore, the
three-point functions we calculate in this work are

Γ(3)
µ, j(~pf ,~q; t f , t) =

1
T

T−1

∑
τ=0

∑
~y

ei~q·~y〈Φ(~pf , t f + τ)Jµ(~y, t + τ)OV, j(~0,τ)〉

=
1
T

T−1

∑
τ=0

∑
~y

ei~q·~y〈Φ(~pf , t f + τ)Tr
[
γµSF(~y, t + τ;~0,τ)γ jγ5S†

F(~y, t + τ;~0,τ)γ5

]
〉

= ∑
S,V,r

e−ES(t f−t)e−EV t

2ES(~p)V32EV
〈0|Φ(~pf ,0)|S(~pf )〉〈S(~pf )|Jµ(0)|V(~pi , r)〉〈V(~pi , r)|O†

V, j(0)|0〉,

(2.5)

whereJµ(x) = c̄(x)γµc(x) is the electro-magnetic current,OV,i = c̄γic the conventional interpolation
field for the vector charmonium, and the summation in the last equality is over all the possible states
and vector polarizations,~pi is the spatial momentum of the initial vector charmonium and satisfies
the relation~pi = ~pf −~q. Obviously the conserved vector currentJµ(x) in the continuum limit is not
conserved any more on the lattice due to the broken Lorentz symmetry, and should be renormalized
properly. In this work, we adopt the non-perturbative strategy proposed by Ref. [11] to define the
renormalization constant,

Zµ
V (t) =

pµ

2E(p)
Γ(2)

ηcηc(~p, t f = T/2)

Γ(3)
ηcγµ ηc(~pf = ~pi = ~p, t f = T/2, t)

, (2.6)

whereΓ(2)
ηcηc is the two-point function of the pseudoscalar charmoniumηc, Γ(3)

ηcγµ ηc the correspond-
ing three point function with the vector current insertion on one of the quark lines. It should be
remarked that, the possible disconnected diagrams due to the charm and anti-charm quark anni-
hilation are neglected in this work in the calculation of all the relevant two-point and three-point
functions.

The parametersES, EV , the matrix elements〈0|Φ(~pf ,0)|S(~pf )〉 and〈0|OV, j |V(~pi , r)〉 can be
derived from the relevant two-point functions of glueballs andJ/ψ. Specifically, from Eq.2.4we
have

〈0|Φ(~pf ,0)|S(~pf )〉 ≈
√

2ES(~pf )V3, (2.7)

and by definition, we also have the relation,

〈0|OV, j(0)|V(~p, r)〉= fVε j(~p, r), (2.8)

where fV is a parameter independent of~p, andε j(~p, r) the polarization vector of the vector meson,
whose concrete expression depends on reference frames and is irrelevant to the calculation in this
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work. By using the multi-pole decomposition, the matrix elements〈S(~pf )|Jµ(0)|V(~pi , r)〉 can be
written as [11],

∑
r
〈S(~pf )|Jµ(0)|V(~pi , r)〉ε j(~pi , r) = αµ jE1(Q2)+βµ jC1(Q2), (2.9)

whereαµ i andβµ i are known functions ofpf andpi (their explicit expressions are neglected here),
E1(Q2) andC1(Q2) are the two form factors which depend only onQ2 = −(pf − pi)2. The form
factorE1(Q2) will enter the formula of the the radiative decay width ofJ/ψ to the scalar glueball
as follows,

Γ(J/ψ → γG0++) =
4
27

α
|~pγ |

M2
J/ψ

|E1(0)|2, (2.10)

whereα is the fine structure constant,pγ the photon momentum with|~pγ |=(M2
J/ψ−M2

G)/(2MJ/ψ).
Therefore we only focus the the extraction ofE1(Q2) in this work.

In practice, we let theJ/ψ to have momentum~pi =~0 and|~pi |= 2π/Las, and make the scalar
glueball moving with a momentum~pf = 2π~n/Las with~n ranging from(0,0,0) to (2,2,2). Among
all the combinations of the vector current indexµ, the polarization indexj, the glueball momen-
tum pf and theJ/ψ momentumpi , it is found that there are specific combinations which gives
αµ i(pf , pi) = 1 andβµ i(pf , pi) = 0, and are thereafter taken into consideration in the practical data
analysis. An additional benefit of this selection is that, for the specific polarizationj andJ/ψ
momentum~pi , one has,∑

r
ε∗j (~pi , r)ε j(~pi , r) = 1.

With these prescriptions, the form factorE1(Q2) can be derived as,

Ẽ1(Q2, t f , t)≈ Z(s)
V Γ(3)(~pf ,~pi ; t f , t)

C(~pf , t f − t)Γ(2)(~pi , t)
fV

√
2ES(~pf )V3 (t, t f − t À 0), (2.11)

whereQ2 can be given by~pi and~pf , the indices of the three-point functionΓ(3) and the related two-

point functionsΓ(2) are omitted here,Z(s)
V is the renormalization constant of the spatial components

of the vector current. In practice, the symmetric indices and momentum combinations which give
the sameQ2 are averaged to increase the statistics. Traditionally, the time separationt andt f −
t should be kept large enough for the ground states to contribute dominantly to the three point
function. Even with this large statistics, we find that the signal of the glueball damps rapidly with
respect tot f − t. However, this is not a real disaster since the optimal glueball operators we use
couple almost exclusively to the ground state, as is mentioned before. So we fixt f − t = 1 with
t varying and extractE1(Q2) from the plateaus of̃E1(Q2, t f , t). With the very high statistics in
this work, the hadron parameters, such as the energies of the glueball andJ/ψ, the constantfV in
Eq.2.8and the matrix elements〈0|Φ(~p,0)|S(~p)〉 can be determined very precisely and are treated
as known parameters.

SinceE1(Q2) for different Q2 are extracted from the same configuration ensemble and are
therefore highly correlated, in the data analysis we fit them through the correlated data fitting. For
each lattice system, the 5000 configurations are divided into 100 bins with 50 configurations in each
bin, and the measurements in each bin are averaged to be taken as an independent measurement.
After that, all theE1(Q2) are extracted simultaneously through the jackknife method. In order
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Figure 2: The extracted form factorsE1(Q2) in the physical units. The left panel is forβ = 2.4 and the right
one forβ = 2.8. The curves with error bands show the polynomial fit withE1(Q2) = E1(0)+aQ2 +bQ4, as
the black dot is the interpolated valueE1(0) atQ2 = 0.

Table 2: Listed in the table are theA++
1 glueball massesMG, the renormalization constantsZ(s)

V (a) of the
spatial component of the vector current, and the form factorsE1(Q2 = 0,a) calculated on the two lattices
with β = 2.4 and 2.8, respectively. Also shown are the continuum extrapolation ofE1(0) and the resultant
partial widthΓ.

β MG(GeV) Z(s)
V (a) E1(0,a) (GeV) Γ(keV)

2.4 1.360(9) 1.39(2) 0.0708(43) -
2.8 1.537(7) 1.15(1) 0.0602(31) -
∞ 1.710(90) [3] - 0.0536(57) 0.35(8)

to get the form factor atQ2 = 0, we carry out a correlated polynomial fit to theE1(Q2) from
Q2 =−1GeV2 to 2.5GeV2,

E1(Q2) = E1(0)+aQ2 +bQ4. (2.12)

Figure2 shows the final results ofE1(Q2) for β = 2.4 (left panel) andβ = 2.8 (right panel), where
the red points are the calculated value with jackknife errors, and the red curves are the polynomial
fit with jackknife error bands, the black points label the interpolatedE1(0,a).

The last step is the continuum extrapolation using the two lattice systems. Since we have
only two different lattice spacings, we only do the linear extrapolation ina2

s. The continuum limit
of E1(0,a) is determined to beE1(0) = 0.0536(57)GeV. In order to get the continuum decay
width, the continuum limit of scalar glueball mass should be also extrapolated, For which we
quote the valueMG = 1.710(90) [3]. Thus, according to Eq.2.10, we finally get the decay width
Γ(J/ψ → γG0++) = 0.35(8)keV. Using the reported total width ofJ/ψ, Γtot = 92.9(2.8)keV, the
corresponding branch ratio is

Γ(J/ψ → γG0++)/Γtot = 3.8(9)×10−3. (2.13)

3. Summary and Discussion

We carry out the first lattice study on theE1 decay amplitude ofJ/ψ radiatively decaying
into the pure gauge scalar glueballG0++ in the quenched approximation, where glueballs are well

6
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defined objects. With two different lattice spacings, the amplitude, which is derived from the matrix
elements of the electromagnetic current of the charm quark between the scalar glueball andJ/ψ, is
extrapolated to the continuum limit with a valueE1(Q2 = 0) = 0.0536(57)GeV. Thus the partial
decay widthΓ(J/ψ → γG0++) is predicted to be0.35(8)keV, which gives the branch ratioΓ/Γtot =
3.8(9)×10−3. This result can be compared with the production rates off0(1710), f0(1500) and
f0(1370) in the radiative decays ofJ/ψ. From PDG2010 [12], the branch ratios of the observed
radiative decay modes ofJ/ψ to f0(1710) areBr(J/ψ → γ f0(1710)→ γKK̄) = 8.5+1.2

−0.9×10−4,
Br(J/ψ → γ f0(1710) → γππ) = (4.0± 1.0)× 10−4, Br(J/ψ → γ f0(1710) → γωω) = (3.1±
1.0)×10−4, which add up to1.5×10−3. If one goes further to take the branch ratioBr( f0(1710)→
KK̄) = 0.36±0.12 [13], and the ratioΓ( f0(1710)→ ππ)/Γ( f0(1710)→ KK̄) = 0.41+0.11

−0.17 [14],
one can estimate the production rate off0(1710) to be(2.4±0.8)×10−3 or (2.7±1.3)×10−3 [15],
which is compatible with our result. As for thef0(1500), BESII reported a branch ratioBr(J/ψ →
γ f0(1500)) = (1.01±0.32)×10−4 [12, 14], which is much smaller than our prediction. It should
be mentioned that a glueball-qq̄ meson mixing model study [16] claims thatf0(1710) is composed
primarily of a scalar glueball, and expects thatΓ(J/ψ → γ f0(1710))À Γ(J/ψ → γ f0(1500). At
last, there is no evidence of the production off0(1370) in theJ/ψ radiative decays.

To summarize, even though the systematic uncertainties owing to the quenched approximation
are not under control in this work, our results are helpful to the identification of the scalar glueball
both from the phenomenology and experiments.
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