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1. Introduction

Correctly and accurately calculating the spectrum of flavor singlet mesonsis an important
test of lattice QCD methods. A full non-perturbativeNf = 2+ 1 flavor calculation can provide
an understanding of how the topological effects in the fermion sea raise themass of theη andη ′

mesons above that of the pion.
The pseudoscalar singlet sector is of particular interest to the question of the validity of the

fourth-root trick employed in staggered fermion simulations. This trick reduces the native four
degenerate flavors of staggered sea fermions to one, allowing the simulationof an arbitrary number
of flavors. Although the staggered formulation has generated an impressive set of high-precision
calculations with results in agreement with experiment, doubts have been expressed about the the-
oretical robustness of the fourth-root trick. In particular it has been suggested that theη −η ′ sector
would be where one would look for the failure of the formulation to be evident[5, 6]. Some of
these concerns have been addresses theoretically, see e.g. [7], and[8].

Determinations of singlet quantities require the costly calculation of disconnected diagrams.
With Nf flavors the pseudoscalar singlet propagator containsNf connected terms:

〈∑
i

︷ ︸︸ ︷

qi(x
′)(γ5⊗1)qi(x

′)∑
j

q j

︸ ︷︷ ︸

(x)(γ5⊗1)q j(x)〉 (1.1)

andN2
f disconnected terms:

〈∑
i

︷ ︸︸ ︷

qi(x
′)(γ5⊗1)qi(x

′)∑
j

︷ ︸︸ ︷

q j(x)(γ5⊗1)q j(x)〉. (1.2)

Here we use the operator(γ5⊗1) to indicate that the state hasγ5 Dirac structure and singlet stag-
gered taste structure.

We can see the how the disconnected diagrams raise the mass of the singlet over the mass of
the octet meson by examining a simple chiral expansion of the singlet propagator in the flavor-
symmetric case. Usingµ2 to represent the effective coupling between two pion propagators, we
can write:

G̃η ′(p) =
1

p2+m2
π

(1.3)

− 1
p2+m2

π
µ2 1

p2+m2
π

(1.4)

+
1

p2+m2
π

µ2 1
p2+m2

π
µ2 1

p2+m2
π

(1.5)

− 1
p2+m2

π
µ2 1

p2+m2
π

µ2 1
p2+m2

π
µ2 1

p2+m2
π

+ ... (1.6)

=
1

p2+m2
π +µ2 , (1.7)

where the mass squared has shifted byµ2.
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Ensemble Nf 10/g2 L3×T aml/s mπ Nconfigs Ntraj

a= 0.12fm
A 0 8.00 203×64 0.050 0.757(1) 6154
B 2+1 6.75 243×64 0.006/0.03 0.280(1) 4453 26718

a= 0.09fm
C 2+1 7.095 323×64 0.00775/0.031 0.357(3) 2811 16866

Table 1: Ensembles used in the simulations.

It is important to note that this expansion is valid only for full QCD, with sea quarks working
properly. Line 1.3 is the connected contribution and the pion propagator. In a quenched world,
the expansion would stop at the end of line 1.4, with the singleµ2 coupling the two valence quark
loops that make up the quenched disconnected propagator.

We can examine the behavior or mis-behavior of sea quarks by taking a ratioof the discon-
nected contribution to the connected contribution. We expect that the connected propagator and
the full singlet propagator at large time separations decays likeGπ(t)∼ e−mπ t andGη ′(t)∼ e−mη ′ t ,
respectively, withmη ′ = mπ +µ2. Therefore in full QCD we expect at large times

R(t) =
N2

f D(t)

NfC(t)
=

NfC(t)−Gη ′(t)

NfC(t)
= 1−Aexp[−(mη −mπ)t] . (1.8)

Whereas in quenched QCD we expect

R(t) =
N2

f D(t)

NfC(t)
= A′+B′t. (1.9)

One can imagine performing some operation on the fermion matrix which would introduce some
other pathology, say change the number of flavors of the sea quarks orthe mass of the sea quarks
with respect to the valence quarks. In these cases we might expect to be able measure a deviation
of the behavior of the disconnected-to-connected ratio from the form of1.8. The question is: does
the fourth-root-trick cause such a measureable pathology?

2. Lattice simulation

Specifically for this project we have generated two long ensembles of dynamical staggered
gauge configurations. These are listed as ensemblesB andC in Table 1. We refer to these as the
“coarse” and “fine” ensembles, respectively. We used the ASQTAD improved staggered fermion
action, with the standard fourth root trick. We used tadpole improved Symanzik gauge action. The
two long dynamical ensembles were generated on the UKQCD’s QCDOC installation.

For comparison we also generated a 6154-configuration quenched ensemble, labeledA in Ta-
ble 1. This is an extension of a 408-configuration generated by the MILC collaboration. This
extension was generated on a small cluster in Liverpool.

We calculated the connected components of the using standard point sources. Due to the
inherent noisiness of disconnected correlators we use a stochastic source method.
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Figure 1: Histograms of disconnected correlator measurements on 393856 measurements (6154 configs
× 64 starting time slices) on quenched configurations for∆t = 2 and∆t = 10. Note how symmetric the
distribution has become for moderate time separations.

In practice, for the disconnected correlator we use a variance-reduction trick due to Venkatara-
man and Kilcup [4]. which is applicable to staggered operators with an even number of links
separating the quark and antiquark. The disconnected correlator is the product of two valence loop
operators:

D(∆t) = 〈Oγ5⊗1(t)Oγ5⊗1(0)〉 (2.1)

In [1] we showed that since individual measurements ofOγ5⊗1(t) fall in a Gaussian distribu-
tion, their product, the individual measurements of the disconnected correlator D(t), will fall in a
long-tailed distribution shaped like a modified Bessel function of the second kind. Such a distribu-
tion always has the peak at zero, and the mean is strongly dependent on the asymmetry of the long
tails. That is, outliers many standard deviations from the mean are relatively common. Figure 1
shows such distributions for∆t = 2 and∆t = 10. This is the essence of the difficulty in measuring
disconnected diagrams.

We measure disconnected and connected correlators with light and strange valence quarks
with both local and fuzzed sources.

3. Results

3.1 D/C Ratio

To test the behavior of the sea quarks we constructed the ratio of the disconnected contribution
to the connected contribution of the propagator as described in Section 1. For theNf = 2+1 flavor
ensembles, the ratio we construct is a generalization of Eqn. 1.8:

R(t) =
4Dqq(t)+4Dqs(t)+Dss(t)

2Cqq(t)+Css(t)
. (3.1)

The dynamical data are consistent with the 1−Ae−δmt form of Eq. 1.8, saturating near unity. They
are easily distinguished from the linear curve followed by the quenched data. It is worth reiterating
that we were unable to resolve this behavior in earlier works when we wereusing ensembles of
∼ 400 configurations.
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Figure 2: The ratio of the disconnected to connected contributions topseudoscalar singlet propagators. The
circles and squares are the coarse and fineNf = 2+ 1 flavor ensembles respectively and fall on a curve
consistent with Eqn. 1.8. The diamond symbols are the quenched data and fall on a linear curve consistent
with Eqn. 1.9.

3.2 Spectroscopy & mixing angles

We perform factorizing fits of a 4×4 correlator matrix with elements corresponding to source
and sink flavor (q or s) and fuzzing (F or L for fuzzed of local).

G=








CqqLL−2DqqLL Cqq−2DqqLF −
√

2DqsLL −
√

2DqsLF

CqqFL−2DqqFL Cqq−2DqqFF −
√

2DqsFL −
√

2DqsFF

−
√

2DsqLL −
√

2DsqLF CssLL−DssLL CssLF−DssLF

−
√

2DsqFL −
√

2DsqFF CssFL−DssFL CssFF−DssFF








(3.2)

We fit to a common ladder of mass states:

Gi j (t) =
Nexp

∑
k=0

ai,ka j,k

2Ei
e−mkt . (3.3)

We identify the ground state and first excited state with theη andη ′ mesons. A second excited
state likely corresponds to theη(1295). We find :

Ensemble aE0 aE1 aE2

B 0.410(3) 0.529(12) 1.14(13)
C 0.296(3) 0.462(15) 0.822(68)

Unfortunately, computer time was not sufficient to run the finer dynamical ensemble (B) at the same
light quark mass as the coarse lattice, preventing us from taking a meaningful continuum limit. We
therefore quote these results with statistical errors only. In Figure 3 we summarize our results as
a function of botha2 andm2

π . In Figure 3 we compare our results with those of RBC/UKQCD
collaboration [2] and HSC collaboration[3], as a function of squared pion mass.

Theη-η ′ mixing can be described using either theSU(3) basis or the quark-flavor basis. We
use the latter in which

|ηq〉 =
1√
2

(
|uu〉+ |dd〉

)
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Figure 3: Spectrum results forNf = 2+1 dynamical pseudoscalar singlets, showing the ground state (tri-
angle) and first two excited states (diamond burst) which we identify as theη , η ′ andη(1295). We plot
against Goldstone pion mass squared (left) and lattice spacing squares (right). For comparison we display
the staggered pion splitting (bars).
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Figure 4: Comparison of spectrum results for theη , η ′ andη(1295) (a), and mixing angle results (b). We
convert the RBC/UKQCD angle from theSU(3) basis to the quark flavor basis.

|ηs〉 = |ss〉 (3.4)

and [

|η〉
|η ′〉

]

=

[

cosφP −sinφP

sinφP cosφP

][

|ηq〉
|ηs〉

]

. (3.5)

With SU(3) flavor-breaking we are the mixing is in principle described bytwo mixing an-
gles [9]. In the flavor basis the two mixing angles can be related to the fit amplitudes and decay
constants: [

aqη asη

aqη ′ asη ′

]

=

[

fqcosφq − fssinφs

fqsinφq fscosφs

]

, (3.6)

where thea’s are the amplitudes in Eqn. (3.3) resulting from the fits.There are arguments[10, 11]
suggesting thatφs ∼ φq. We solve for the angles separately using tanφq =

aqη ′
aqη

and tanφs = −asη ′
asη

.
We also perform fits of our fit amplitudes to Eqn 3.6 with the constraintφq = φs. We present
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β φest
q φest

s φ fit χ2/do f

6.75 25(4) 36(2) 34(3) 8.2/3
7.095 40(5) 34(2) 34(2) 3.7/3

Table 2: η-η ′ mixing angles in degrees defined and determined as describedin the text.

the results in Table 2. We plot the result for the single-angle in Fig. 4b along with results from the
RBC/UKQCD collaboration [2] and the Hadron Spectrum Collaboration [3]HSC and experimental
numbers from the summary in [12].

4. Conclusions

We have calculated the pseudoscalar singlet spectrum and theη −η ′ mixing angles withNf =

2+1 flavors of dynamical staggered fermions. We get results in reasonable agreement with that
from other formulations and experiment. We see no “smoking-gun” evidence of any pathologies
caused by the “fourth-root trick” in the staggered-formulation.
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