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The negative-parity ground state of the Λ baryon lies surprisingly low in mass. At 1405.1 MeV,
it lies lower than the negative-parity ground state nucleon, even though it has a valence strange
quark. Using the PACS-CS (2+ 1)-flavour full-QCD ensembles available through the ILDG,
we employ a variational analysis using source and sink smearing to investigate the low-energy,
odd-parity spectrum of the Λ baryon. We isolate two low-lying odd-parity states, with the lowest
state approaching the Λ(1405) in the physical limit. Moreover, for the first time we reproduce the
correct level ordering with respect to the nearby multiparticle scattering thresholds.
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Figure 1: Comparison between unprojected and eigenstate-projected effective masses.

1. The ΛΛΛ(1405)

At 1405.1+1.3
−1.0 MeV [1], the lowest-lying JP = 1

2
− state of the Λ baryon lies abnormally low in

mass. Even though it possesses a valence strange quark, is lies lower than the lowest-lying, odd-
parity state of the nucleon, the N(1535). It also lacks a nearby spin-orbit partner, with the lowest
spin-3/2− state being the Λ(1520). The internal structure of this unusual resonance has mystified
researchers for many years. While on one hand it is regarded as a conventional three-quark state,
on the other there is much discussion of a more exotic kaon-nucleon bound state.

There have been quite a few Lattice QCD studies of the Λ baryon, however most have used
the quenched approximation, and none have identified an odd-parity state low enough in energy
to be identified with the Λ(1405) [2–6]. Most recently, Takahasi and Oki identified two nearly
degenerate states at around 1.6 GeV [6].

Recently, the CSSM Lattice Collaboration has developed an effective technique for isolating
the P11(1440) Roper resonance using source and sink smearing together with a variational analysis
[7, 8]. We use the same methods in this study of the odd-parity, spin-1/2 sector of the Λ baryon.
We find three low-lying states that are low-enough to correspond to the physical Λ(1405), Λ(1670),
and Λ(1800) S01 states of Nature. Moreover, we report the correct level-ordering with respect to
the nearby πΣ and KN multiparticle scattering thresholds

2. Lattice Techniques

To isolate individual states, we use the variational method [9, 10]. This takes advantage of
the information contained in the cross-correlation functions between different sources and sinks to
project out correlation functions for individual energy eigenstates.

Even though the Λ(1405) is the lowest odd-parity state of the Λ baryon, such a technique is
necessary as there are another two nearby low-lying states (the Λ(1670) and Λ(1800)). Since SU(3)-
flavour symmetry is broken by the heavy strange quark, all three of these states will survive until
the noise limit in the correlation function, and hence the usual, long-time approximation (Eq. 2.5)
normally used to extract the ground state will only resolve a mixture of these states. As indicated
in Fig. 1, the variational technique allows us to individually isolate the states [11].
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In comparison to the Roper resonance, where significant finite-size effects appear in the form
of avoided level crossings from interactions between the baryon and multiparticle scattering states,
the low-energy, odd-parity I = 0 sector is quite clean. The Λ(1405) is relatively independent of
the box size, and the two nearby multiparticle scattering thresholds, πΣ and KN, lie, respectively,
below and above the Λ(1405) and do not cross for the lattice volumes depicted in Fig. 2. As such,
finite-size effects are benign in this analysis.

Consider a set of N operators χi(x, t) that couple to our baryon of interest, and construct the
N ×N correlation matrix or parity-projected correlation functions

G±
i j(p, t) = ∑

x
e−ip·x tr(Γ±(p)⟨Ω|χi(x, t)χ j(0,0)|Ω⟩) , (2.1)

where Γ±(p) are the parity projection operators at momentum p used to project into definite
positive- or negative-parity, and the trace is taken over the (implicit) spinor indices. Working at
zero momentum, these projectors are Γ±(0) := (γ0 ±1)/2, and then

G±
i j(0, t) = ∑

x
tr
(

γ0 ±1
2

⟨Ω|χi(x, t)χ j(0,0)|Ω⟩
)
= ∑

α
λ α±

i λ α±
j e−m±

α t . (2.2)

The α index enumerates the energy eigenstates of parity ± with mass m±
α , and λ α±

i and λ α±
j are

the couplings of the operators χi and χ j to these eigenstates.
The t dependence is only in the exponential terms, and so we look for a linear combination of

operators ϕ α = ∑i vα
i χi and ϕ α = ∑i uα

i χ i such that

G±(t0 +∆t)uα = e−m±
α ∆tG±(t0)uα and vαTG±(t0 +∆t) = e−m±

α ∆tvαTG±(t0) (2.3)

for sufficiently large t0 and ∆t. That is, uα and vα are the generalised eigenvectors of the matrices
G±(t0) and G±(t0 +∆t). These eigenvectors will diagonalise the correlation matrix at times t0
and t0 +∆t through vαTG±uβ ∝ δ αβ e−mα t , and this lets us define eigenstate-projected correlation
functions

G±
α (t) := vαTG±uα . (2.4)

These new correlation functions should contain isolated energy eigenstates (that is, individual ba-
ryon states), and these can now be analysed using standard effective mass techniques,

m±
α (t) = ln

G±
α (t)

G±
α (t +1)

. (2.5)

More details can be found in [7, 12].
As the Λ baryon lies in the centre of approximate SU(3)-flavour, we can consider operators of

different flavour-symmetry structures in addition to the usual various Dirac structures. Initially, we
consider just the “comon” interpolating operators [13]

χc
1(x) :=

1
2

εabc
(
(uaT(x)Cγ5sb(x))dc(x)− (daT(x)Cγ5sb(x))uc(x)

)
and

χc
2(x) :=

1
2

εabc
(
(uaT(x)Csb(x))γ5dc(x)− (daT(x)Csb(x))γ5uc(x)

)
. (2.6)
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Figure 2: Energy spectrum of the I = 0, S = 1,
JP = 1/2− meson-baryon sector obtained from the
KN Jülich model of hadron exchange [17], show-
ing small finite-size effects for the Λ(1405). Adapted
from [17].
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Figure 3: The kaon mass plotted against m2
π in

lattice units on the PACS-CS ensembles, as quoted
in [15]. Extrapolating to the physical limit using
m2

K = α + βm2
π , the kaon is approximately 60 MeV

higher than the physical kaon.

These isospin-0 operators make no assumptions about the flavour-symmetry structure of the baryon,
and couple to all states of the Λ.

To round out our operator basis, similarly to the method for isolating the Roper resonance we
employ gauge-invariant Gaussian smearing [14] in the spatial dimensions at both the source and
sink. This is an iterative procedure; with ψ0(x, t) as the original field, for the i-th sweep, we take

ψi(x, t) = ∑
x′

F(x,x′)ψi−1(x′, t), (2.7)

where the smearing function is

F(x,x′) = (1−α)δx,x′ +
α
6

3

∑
µ=1

(
Uµ(x, t)δx′,x+µ̂ +U†

µ(x− µ̂, t)δx′,x−µ̂
)
. (2.8)

We use α = 0.7 in our calculations.
We use the PACS-CS (2+ 1)-flavour full-QCD ensembles [15], available through the ILDG

[16]. They have a lattice extent of 323 × 64 with β = 1.90, giving a lattice spacing of a =

0.0907(13) fm. There are 5 light quark masses available with hopping parameters κu,d = 0.13700,
0.13727, 0.13754, 0.13770, and 0.13781, corresponding to pion masses ranging from 702 MeV
down to 156 MeV. The strange quark mass is the same for all light quark masses, with hopping
parameter κs = 0.13640. However, this is slightly too high to reproduce the physical kaon mass.
Plotting the kaon mass data provided in [15] against m2

π , as in Fig. 3, and extrapolating to the
physical limit, we see that the kaon lies approximately 60 MeV too high.

3. Results

The first step in our analysis is to determine the optimal parameters t0 and ∆t, and operators
χi to use in the variational analysis. We compare the masses extracted from both the eigenval-
ues (e−m±

α ∆t) and the fits to the projected effective masses (Eq. 2.5) across parameters ranges of
t0 ∈ {17, . . . ,21} and ∆t ∈ {1, . . . ,5} (with the source located at t = 16), as depicted in Fig. 4, and
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Figure 4: Comparison of the mass as extracted from the eigenvalues (left) and from fitting the projected
effective mass (right) with κu,d = 0.13770 for t0 ∈ {17, . . . ,21} and ∆t ∈ {1, . . . ,5}. Numbers of the abscissa
indicate t0 with ∆t increasing within each t0. Complex eigenvalues are not displayed.
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Figure 5: Comparison of the lowest-lying masses extracted from fitting the projected effective mass for
κu,d = 0.13727 over bases formed from combinations of either or both ”common“ operators χc

1 and χc
2 and

all smearing levels.

find that while the eigenvalues show a significant dependence on parameters, the fits to the pro-
jected effective masses are stable for sufficiently large t0 and ∆t. We select t0 = 18 and ∆t = 2 as
representative.

In Fig. 5, we investigate the dependence of the spectrum on the operator basis used to form
the correlation matrix. We find that we require both common interpolating operators χc

1 and χc
2 to

isolate the lowest state. Using either of these operators individually results in only a mixed state.
We cannot resolve the three low-lying states that are present in the physical spectrum with these
operators. If we include sufficiently large amounts of smearing, there is little to separate the bases.
We select the dimension-6 basis formed from χc

1 and χc
2 at 16, 100, and 200 sweeps of smearing.

Using the variational parameters and basis selected above, we calculate the spectrum of the
odd-parity, spin-1/2 sector of the Λ baryon for all available quark masses. Plotted in Fig. 6, we
see that we do have low-lying states that are trending towards the physical values, however the
lowest-lying state sits too high to approach the Λ(1405), especially given that finite-size effects are
expected to be negligible. However, the slightly-too-heavy strange quark interferes with a compar-
ison with the physical values, and so we calculate the nearby πΣ and KN multiparticle scattering
thresholds (plotted on the same figure). Our lowest-lying state lies between these thresholds, as in
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Figure 6: The lowest-lying eigenstate-projected masses plotted against m2
π , along with the nearby mul-

tiparticle scattering thresholds. A correlated error analysis indicates the lowest-lying odd-parity state lies
more than one standard deviation below the KN scattering threshold at the lightest quark mass. The ordering
of the states is in accordance with Nature.

Nature, indicating that we have isolated the Λ(1405). To gain insight into the dependence of the
spectrum on the strange quark mass, future work will repeat our analysis using a partially quenched
strange quark on the lightest two up and down quark masses.
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