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We address the issue of bound state in the two-nucleon systemin lattice QCD with the quenched

approximation at the lattice spacing ofa = 0.128 fm using a heavy quark mass corresponding to

mπ = 0.8 GeV. To distinguish a bound state from an attractive scattering state, we investigate the

volume dependence of the energy difference between the ground state and the free two-nucleon

state by changing the spatial extent of the lattice from 3.1 fm to 12.3 fm. A finite energy difference

left in the infinite spatial volume limit leads us to the conclusion that the measured ground states

for not only spin triplet but also singlet channels are bounded. Furthermore the existence of the

bound state is confirmed by investigating the properties of the energy for the first excited state

obtained by 2×2 diagonalization method. The scattering lengths for both channels are evaluated

by the finite volume formula derived by Lüscher.
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Bound state of two-nucleon systems in quenched lattice QCD

1. Introduction

The strong interaction dynamically generates a hierarchical structure: three quarks are bound
to form a nucleon with an energy of 1 GeV, and nucleons are in turn boundto form nuclei with
a binding energy of 10 MeV or so per nucleon. This is a multi-scale physics that computational
physics should explore, and lattice QCD is responsible for explaining the nature of nuclei based on
first principles.

Recently, we have made a first attempt to directly construct the Helium-3 and Helium-4 nuclei
in quenched QCD [1] at a rather heavy quark mass corresponding tomπ = 0.8 GeV, and success-
fully confirmed the formation of Helium nuclei as a bound state. After our finding of the Helium
nuclei, an evidence of the H di-baryon bound state inN f = 2+1 andN f = 3 QCD were reported
by NPLQCD [2, 3] and HALQCD [4] Collaborations, respectively. The situation, however, is
markedly different for deuteron, which is the simplest nucleus composed of two nucleons in the
spin triplet channel, and yet evidence based on lattice QCD for bound statehad never been reported
before our paper [5]. It is already quite some time ago that a first analysisof the two-nucleon system
was made in quenched QCD [6]. Much more recently, studies were made with apartially-quenched
mixed action [7] andN f = 2+1 anisotropic Wilson action [8]. Extraction of the potential between
two nucleons has been investigated in quenched QCD [9]. All these studies, however, tried to cal-
culate the two-nucleon scattering lengths assuming, based primarily on model considerations with
nuclear potentials, that the deuteron becomes unbound for the heavy quark mass, corresponding to
mπ∼> 0.3 GeV, employed in their simulations.

To check the validity of this assumption, we need to investigate whether the bound state exists
or not in the heavy quark mass region, where studies so far have been carried out, using the arsenal
of methods solely within lattice QCD. If there is a bound state, the ground state energy never yield
the scattering length if substituted into the Lüscher’s finite volume formula [10].In such a case,
the scattering length should be obtained from the energy of the first excitedstate.

We carry out two types of calculations at a heavy quark mass corresponding tomπ = 0.8 GeV
in quenched QCD. The first one is a conventional analysis in which we investigate the volume
dependence of the energy shift for the ground state. Different volumedependence is expected for
scattering and bound states. In the second one we investigate the energy level of the first excited
state employing the diagonalization method [11] to separate the first excited statefrom the ground
state near the threshold of 2mN . If we find the ground state slightly below the threshold and the first
excited state slightly above it, then such a configuration of the two lowest levelsis consistent with
the ground state being a bound state and the first excited state a scattering state with almost zero
relative momentum. This method was previously used in a scalar QED simulation to distinguish a
system with or without a bound state [12].

Hereafter we call the analyses employed in the first and second calculations the single state
and two state analyses, respectively. The results in this article have been reported in Ref. [5].

2. Single state analysis

We generate quenched configurations with the Iwasaki gauge action [14] at β = 2.416 whose
lattice spacing isa = 0.128 fm, corresponding toa−1 = 1.541 GeV, determined withr0 = 0.49 fm
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Figure 1: Effective energy shifts for3S1 (left) and1S0 (right) channels. Circle and square denote results for
theO1,2 source operators, respectively.

as an input [15]. We take three lattice sizes,L3×T = 243×64, 483×48 and 963×48, to investigate
the spatial volume dependence of the energy difference between the two-nucleon ground state and
twice the nucleon mass. The physical spatial extents are 3.1, 6.1 and 12.3 fm,respectively.

We use the tadpole improved Wilson action withcSW = 1.378 [15]. Since it becomes harder
to obtain a reasonable signal-to-noise ratio at lighter quark masses for the multi-nucleon system,
we employ a heavy quark mass atκ = 0.13482 which givesmπ = 0.8 GeV for the pion mass and
mN = 1.6 GeV for the nucleon mass. Statistics is increased by repeating the measurement of the
correlation functions with the source points in different time slices on each configuration.

The quark propagators are solved with the periodic boundary condition inall the spatial and
temporal directions using the exponentially smeared sourceq′(~x, t) = ∑~y Ae−B|~x−~y|q(~y, t) after the
Coulomb gauge fixing. On each volume we employ two sets of smearing parameters: (A,B) =

(0.5,0.5), (0.5,0.1) for L = 24 and(0.5,0.5), (1.0,0.4) for L = 48 and 96. The onset of ground
state can be confirmed by consistency of effective masses with differentsources as shown later.
Hereafter the nucleon operators using the first and the second smearingparameter sets are referred
to asO1 andO2, respectively.

2.1 Numerical results

In order to determine the energy shift∆EL = ENN − 2MN precisely in each volume, we de-
fine the ratio of the two-nucleon correlation function divided by the nucleoncorrelation function
squared,R(t) = GNN(t)/(GN(t))2, where the same source operator is chosen forGNN(t) andGN(t).
The effective energy shift is extracted as∆Eeff

L = ln(R(t)/R(t +1)).

In the left panel of Fig. 1 we present typical results of time dependence of ∆Eeff
L for theO1,2

sources in the3S1 channel, both of which show negative values beyond the error bars in the plateau
region oft = 8–11. Note that this plateau region is reasonably consistent with that for theeffective
mass of the two-nucleon correlation functions. The signals of∆Eeff

L are lost beyondt ≈ 12 because
of the large fluctuations in the two-nucleon correlation functions. We determine ∆EL by an expo-
nential fit of the ratio in the plateau region,t = 8–12 forO1 andt = 7–12 forO2, respectively. We
obtain a similar quality for the signal for the1S0 channel on the (6.1 fm)3 box shown in the right
panel of Fig. 1.
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Figure 2: Volume dependence of energy shifts∆EL as function of 1/L3 for 3S1 (left) and1S0 (right) chan-
nels. The dashed line is extrapolation to the infinite volume, and filled circle denotes the extrapolated result.

The volume dependence of the energy shift∆EL for the 3S1 channel is plotted as a function
of 1/L3 in the left panel of Fig. 2. The results for theO1,2 sources are consistent within the error
bars. Little volume dependence for∆EL indicates a bound state, rather than the 1/L3 dependence
expected for a scattering state, for the ground state in the3S1 channel. The binding energy in
the infinite spatial volume limit is extracted by a simultaneous fit of the data for theO1,2 sources
employing the fit function including a finite volume effect for the two-particle bound state [12, 13],

∆EL = − γ2

mN

{

1+
Cγ

γL

′
∑
~n

exp(−γL
√

~n2)√
~n2

}

, (2.1)

whereγ andCγ are free parameters,~n is three-dimensional integer vector, and∑′
~n denotes the

summation without|~n| = 0. The binding energy,−∆E∞, is determined from−∆E∞ = −γ2/mN ,

assuming 2
√

m2
N − γ2−2mN ≈−γ2/mN . The systematic error is estimated from the difference of

the central values of the fit results choosing different fit ranges in the determination of∆EL, and
also using a constant fit as an alternative fit form. Adding the statistical andsystematic errors by
quadrature, we obtain−∆E∞ = 9.1(1.3) MeV for the binding energy. From the result, we conclude
that the ground state in the3S1 channel is a bound state.

The right panel of Fig. 2 plots the volume dependence of the energy shift∆EL for the 1S0

channel. Employing the same analysis as in the3S1 channel, we find that−∆E∞ = 5.5(1.5) MeV
in the infinite volume limit, which is 3.7σ away from zero. This tells us that the ground state in the
1S0 channel is also bound atmπ = 0.8 MeV. Since the existence of the bound state in this channel
is not expected at the physical quark mass, it might be a consequence ofmuch heavier quark mass
used in our calculation.

3. Two-state analysis

The focus of the analysis is the characteristic feature, well known from quantum mechanics,
that the existence of a bound state implies a negative scattering length, and hence a scattering state
just above the two-particle threshold in a finite volume. Our investigation is carried out with the
diagonalization [11] of 2×2 correlation function matrix.
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Figure 3: Effective energy shifts∆E
eff
L,α obtained from eigenvalues for ground (circle) and first excited

(square) states in3S1 (left) and1S0 (right) channels. Three solid lines and single line denote the result of the
single state analysis with theO1 operator and free two-nucleon energy with the lowest momentum.

We work with two spatial extents, 4.1 fm and 6.1 fm. The corresponding lattice sizes are
L3×T = 323×48 and 483×48, respectively. The latter is the same size as in the first ensemble,
but we regenerate independent configurations. Most of the simulation parameters, including the
gauge and fermion actions, lattice spacing, quark mass, are identical to those explained in the
previous section. The diagonalization method for the 2×2 matrix requires two operators each at
source and sink time slice, which are explained in our full paper [5]. We note that due to our criteria
of the choice of the operators, this analysis does not provide an independent check for the ground
state energy against the single state analysis.

We diagonalize the following matrix at eacht, M(t, t0) = C(t0)−1C(t), whereC(t) is the cor-
relation function matrix of the two-nucleon operators andt0 a reference time. We determine the
two eigenvaluesλα(t) (α = 0,1) of M(t, t0) at eacht and extract the energy of each eigenstateα
throughλα(t) = exp(−EL,α(t − t0)). In order to determine the energy shift from the threshold as
in the single state analysis, we define the ratio of the eigenvalue obtained fromthe diagonalization
to the nucleon correlation function squared,Rα(t) = λα(t)/(GN(t))2. We also define the effective
energy shift of the ratioRα as,∆E

eff
L,α = ln(Rα(t)/Rα(t +1)).

3.1 Numerical results

We show the results for the3S1 channel on the (6.1 fm)3 box. The effective energy shifts
for the 3S1 channel are plotted in the left panel of Fig. 3. In Fig. 3 we use the nucleoncorrelator
with the O1 operator for the denominator ofRα(t). The ground state result∆E

eff
L,0 is reasonably

consistent with the result of the single state analysis with theO1 source, which is expressed by the
three solid lines in the figure. The first excited state is clearly higher than the ground state, but
it is much lower than the free case with the lowest relative momentum, whose energy is given by

2
√

m2
N +(2π/L)2 denoted by the single solid line in the figure.

In the right panel of Fig. 3 the effective energy shifts for the ground and first excited states
∆E

eff
L,α for the 3S1 channel are shown. We find features similar to those in the3S1 channel. We

observe that the absolute value of the energy shift of the ground state is almost half of that in the
3S1 channel. This is consistent with the observation in the first calculation. On theother hand, the
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Figure 4: Volume dependence of energy shift∆EL,1 obtained from the eigenvalues of the first excited state
for 3S1 and1S0 channels as a function of 1/L3. The statistical and systematic errors are added in quadrature.

energy shift of the first excited state shown in the figure is almost twice larger than that in the3S1

channel. This finding is consistent with the property of a system which contains a shallow bound
state: The scattering length negatively increases as the binding energy decreases, diverging when
the binding energy vanishes. From the results we confirm that the two-nucleon system in the both
channels at the heavy quark mass ofmπ = 0.8 GeV has a bound state.

In Fig. 4 we plot the energy shift for the first excited state from the two latticevolumes as a
function of 1/L3. A roughly linear behavior, with a larger shift on the (4.1 fm)3 box compared
to a smaller shift on the (6.1 fm)3 box, is consistent with this state being a scattering state. We
evaluate the scattering length using Lüscher’s finite volume formula [10], where we find reasonable
consistency between the two volumes [5]. If our finding of a bound state in quenched QCD at
heavy quark mass smoothly continues to the physical point, then this is the firstcalculation which
explained a negative scattering length for the deuteron channel.

4. Conclusion and discussion

We have carried out two calculations in quenched QCD to investigate whetherthe two nucleon
systems have a bound state or not at the heavier quark mass, corresponding to mπ = 0.8 GeV. In
the first calculation, we have focused on the ground state of the two-nucleon system, and have
investigated the volume dependence of the energy shifts obtained with two different source oper-
ators. In the second calculation we have carried out two-state analysis using the diagonalization
method with the 2×2 correlation function matrix. Based on these results we have concluded that
the ground state is a bound state at the heavy quark mass in both the channels.

While similar bound state in the1S0 channel was observed in recentN f = 2+1 QCD calcula-
tion atmπ = 390 MeV [3], the existence of the bound state looks odd from the experimental point
of view. We expect that the bound state vanishes at some lighter quark mass, where the scattering
length diverges changing the sign from negative to positive. Further reduction of the quark mass
would decrease the scattering length. Confirmation of this scenario requires to investigate the quark
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mass dependences of the binding energy and the scattering length. We leave this study to future
work.
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