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We address the issue of bound state in the two-nucleon systiattice QCD with the quenched
approximation at the lattice spacing@af 0.128 fm using a heavy quark mass corresponding to
m; = 0.8 GeV. To distinguish a bound state from an attractive scagestate, we investigate the
volume dependence of the energy difference between thendrstate and the free two-nucleon
state by changing the spatial extent of the lattice from®1cf12.3 fm. A finite energy difference
left in the infinite spatial volume limit leads us to the carsibn that the measured ground states
for not only spin triplet but also singlet channels are bathdrFurthermore the existence of the
bound state is confirmed by investigating the propertiehefanergy for the first excited state
obtained by %2 diagonalization method. The scattering lengths for bb#nmaels are evaluated
by the finite volume formula derived by Liischer.
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Bound state of two-nucleon systems in quenched |attice QCD

1. Introduction

The strong interaction dynamically generates a hierarchical structues guarks are bound
to form a nucleon with an energy of 1 GeV, and nucleons are in turn btufarm nuclei with
a binding energy of 10 MeV or so per nucleon. This is a multi-scale physatsctmputational
physics should explore, and lattice QCD is responsible for explaining thieenaf nuclei based on
first principles.

Recently, we have made a first attempt to directly construct the Helium-3 dndriHé nuclei
in quenched QCO[]1] at a rather heavy quark mass correspondimg t00.8 GeV, and success-
fully confirmed the formation of Helium nuclei as a bound state. After ouiirigmaf the Helium
nuclei, an evidence of the H di-baryon bound statdlin= 2+ 1 andN; = 3 QCD were reported
by NPLQCD [2,[8] and HALQCD [[K] Collaborations, respectively. Thtiation, however, is
markedly different for deuteron, which is the simplest nucleus compakttdoonucleons in the
spin triplet channel, and yet evidence based on lattice QCD for bounchsiteever been reported
before our papef]5]. Itis already quite some time ago that a first analfytie two-nucleon system
was made in quenched QCP) [6]. Much more recently, studies were made péttialy-quenched
mixed action [[7] andNy = 2+ 1 anisotropic Wilson actiorf][8]. Extraction of the potential between
two nucleons has been investigated in quenched Q€D [9]. All these sthdigsver, tried to cal-
culate the two-nucleon scattering lengths assuming, based primarily on modal@ations with
nuclear potentials, that the deuteron becomes unbound for the heakyno@iss, corresponding to
m;> 0.3 GeV, employed in their simulations.

To check the validity of this assumption, we need to investigate whether thel lstate exists
or not in the heavy quark mass region, where studies so far have ée@dout, using the arsenal
of methods solely within lattice QCD. If there is a bound state, the ground stetgyemever yield
the scattering length if substituted into the Luscher’s finite volume fornjula [t0$uch a case,
the scattering length should be obtained from the energy of the first exstétd

We carry out two types of calculations at a heavy quark mass corresgaiadn,; = 0.8 GeV
in quenched QCD. The first one is a conventional analysis in which westigate the volume
dependence of the energy shift for the ground state. Different votlependence is expected for
scattering and bound states. In the second one we investigate the enelgyf ke first excited
state employing the diagonalization methpd [11] to separate the first excitedtstatéhe ground
state near the threshold afg. If we find the ground state slightly below the threshold and the first
excited state slightly above it, then such a configuration of the two lowest ieveddsistent with
the ground state being a bound state and the first excited state a scattagngitstalmost zero
relative momentum. This method was previously used in a scalar QED simulationitgudish a
system with or without a bound stafe][12].

Hereafter we call the analyses employed in the first and second calcal#tiesingle state
and two state analyses, respectively. The results in this article havedyemted in Ref.[[5].

2. Single state analysis

We generate quenched configurations with the lwasaki gauge affjpat[84= 2.416 whose
lattice spacing ist = 0.128 fm, corresponding ta~! = 1.541 GeV, determined withy = 0.49 fm
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Figure 1: Effective energy shifts fotS; (left) and!S, (right) channels. Circle and square denote results for
the & 2 source operators, respectively.

as an input[[15]. We take three lattice siZedx T = 24° x 64, 48 x 48 and 96 x 48, to investigate
the spatial volume dependence of the energy difference between theuthenn ground state and
twice the nucleon mass. The physical spatial extents are 3.1, 6.1 and 12e3fmctively.

We use the tadpole improved Wilson action witlyy = 1.378 [15]. Since it becomes harder
to obtain a reasonable signal-to-noise ratio at lighter quark masses for ttienanleon system,
we employ a heavy quark masskat= 0.13482 which givesn,; = 0.8 GeV for the pion mass and
my = 1.6 GeV for the nucleon mass. Statistics is increased by repeating the measuoénie
correlation functions with the source points in different time slices on eatfigewation.

The quark propagators are solved with the periodic boundary conditialh ine spatial and
temporal directions using the exponentially smeared sauf(get) = yyAe B*Vq(y,t) after the
Coulomb gauge fixing. On each volume we employ two sets of smearing param@ds) =
(0.5,0.5), (0.5,0.1) for L = 24 and(0.5,0.5), (1.0,0.4) for L = 48 and 96. The onset of ground
state can be confirmed by consistency of effective masses with diffeoentes as shown later.
Hereafter the nucleon operators using the first and the second smearameter sets are referred
to as¢’; and 0, respectively.

2.1 Numerical results

In order to determine the energy shifE;, = Exn — 2My precisely in each volume, we de-
fine the ratio of the two-nucleon correlation function divided by the nuclamrelation function
squaredR(t) = Gyn(t)/(Gn(t))?, where the same source operator is choseBfgy(t) andGy (t).
The effective energy shift is extracted 88" = In(R(t) /R(t + 1)).

In the left panel of Fig[]1 we present typical results of time dependeha&d’ for the 0 »
sources in théS; channel, both of which show negative values beyond the error bars piateau
region oft = 8-11. Note that this plateau region is reasonably consistent with that fefféutive
mass of the two-nucleon correlation functions. The signals5f' are lost beyondi~ 12 because
of the large fluctuations in the two-nucleon correlation functions. We deterfytin by an expo-
nential fit of the ratio in the plateau regidn= 8—-12 for£;, andt = 7-12 for 0>, respectively. We
obtain a similar quality for the signal for tH&, channel on the (6.1 fri)oox shown in the right

panel of Fig[]L.
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Figure 2: Volume dependence of energy shifif as function of ¥L2 for 3S; (left) and!S (right) chan-
nels. The dashed line is extrapolation to the infinite voluamal filled circle denotes the extrapolated result.

The volume dependence of the energy shEi for the3S; channel is plotted as a function
of 1/L3 in the left panel of Fig[]2. The results for tl® » sources are consistent within the error
bars. Little volume dependence fAE, indicates a bound state, rather than thie*1dependence
expected for a scattering state, for the ground state if$ehannel. The binding energy in
the infinite spatial volume limit is extracted by a simultaneous fit of the data fogilesources
employing the fit function including a finite volume effect for the two-particlemstate[[12 13],

_ VPG ey
AE, = mN{lerL; N } (2.1)

wherey andC, are free parameters is three-dimensional integer vector, ag¢ denotes the
summation withoutii| = 0. The binding energy;-AE.,, is determined from-AE, = —y?/my,

assuming %/mﬁl —y2 —2my ~ —y?/my. The systematic error is estimated from the difference of
the central values of the fit results choosing different fit ranges in ¢ierhination ofAE, , and
also using a constant fit as an alternative fit form. Adding the statisticatystdmatic errors by
quadrature, we obtairAE, = 9.1(1.3) MeV for the binding energy. From the result, we conclude
that the ground state in tH&; channel is a bound state.

The right panel of Fig[]2 plots the volume dependence of the energy/shiffor the 1S
channel. Employing the same analysis as in3®&echannel, we find that AE,, = 5.5(1.5) MeV
in the infinite volume limit, which is 3.6 away from zero. This tells us that the ground state in the
15, channel is also bound at,; = 0.8 MeV. Since the existence of the bound state in this channel
is not expected at the physical quark mass, it might be a consequemuebfheavier quark mass
used in our calculation.

3. Two-state analysis

The focus of the analysis is the characteristic feature, well known fraamtym mechanics,
that the existence of a bound state implies a negative scattering length,renedehscattering state
just above the two-particle threshold in a finite volume. Our investigation isedaout with the
diagonalization([[1]1] of 22 correlation function matrix.
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Figure 3. Effective energy shiftsﬁﬁfffa obtained from eigenvalues for ground (circle) and first &xcti
(square) states it5; (left) and'Sy (right) channels. Three solid lines and single line denméerésult of the
single state analysis with th&, operator and free two-nucleon energy with the lowest moamant

We work with two spatial extents, 4.1 fm and 6.1 fm. The corresponding latties sire
L3 x T =32 x 48 and 48 x 48, respectively. The latter is the same size as in the first ensemble,
but we regenerate independent configurations. Most of the simulatrampgers, including the
gauge and fermion actions, lattice spacing, quark mass, are identical @ dkpkined in the
previous section. The diagonalization method for the? 2natrix requires two operators each at
source and sink time slice, which are explained in our full pgper [5]. Wethat due to our criteria
of the choice of the operators, this analysis does not provide an indepecheck for the ground
state energy against the single state analysis.

We diagonalize the following matrix at eathM(t,to) = C(tg) ~1C(t), whereC(t) is the cor-
relation function matrix of the two-nucleon operators and reference time. We determine the
two eigenvalued,(t) (o = 0,1) of M(t,tp) at eacht and extract the energy of each eigenstate
throughAq (t) = exp(—EL o (t —to)). In order to determine the energy shift from the threshold as
in the single state analysis, we define the ratio of the eigenvalue obtainedheaffagonalization
to the nucleon correlation function squar@}( ) = Aq(t)/(Gn(t))?. We also define the effective
energy shift of the rati®&, as AEL o =IN(Ra(t)/Ra(t+1)).

3.1 Numerical results

We show the results for théS; channel on the (6.1 fl))box. The effective energy shifts
for the 3S; channel are plotted in the left panel of Fi. 3. In Hig. 3 we use the nudeoelator
with the &) operator for the denominator & (t). The ground state resuuﬁfffo is reasonably
consistent with the result of the single state analysis withvtheource, which is expressed by the
three solid lines in the figure. The first excited state is clearly higher thanrtheng state, but
it is much lower than the free case with the lowest relative momentum, whosgydsagiven by

2,/m + (2m/L)2 denoted by the single solid line in the figure.

In the right panel of Fig[]3 the effective energy shifts for the ground first excited states
AEE'L for the 3S; channel are shown. We find features similar to those irPSechannel. We
observe that the absolute value of the energy shift of the ground stdtedstaalf of that in the
3S; channel. This is consistent with the observation in the first calculation. Outltlee hand, the
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Figure 4: Volume dependence of energy shiff, ; obtained from the eigenvalues of the first excited state
for 3S; and'Sy channels as a function of/ll3. The statistical and systematic errors are added in quadrat

energy shift of the first excited state shown in the figure is almost twicerléiiga that in thé'S,
channel. This finding is consistent with the property of a system which ic@ngashallow bound
state: The scattering length negatively increases as the binding energasies, diverging when
the binding energy vanishes. From the results we confirm that the twearusystem in the both
channels at the heavy quark massmpf= 0.8 GeV has a bound state.

In Fig. @ we plot the energy shift for the first excited state from the two latt@demes as a
function of 2/L3. A roughly linear behavior, with a larger shift on the (4.1 fnijox compared
to a smaller shift on the (6.1 fridox, is consistent with this state being a scattering state. We
evaluate the scattering length using Liischer’s finite volume forrhula [1@rewle find reasonable
consistency between the two volumgk [5]. If our finding of a bound stateiémched QCD at
heavy quark mass smoothly continues to the physical point, then this is theafastation which
explained a negative scattering length for the deuteron channel.

4. Conclusion and discussion

We have carried out two calculations in quenched QCD to investigate whbthevo nucleon
systems have a bound state or not at the heavier quark mass, codiegpom,; = 0.8 GeV. In
the first calculation, we have focused on the ground state of the twoemuslestem, and have
investigated the volume dependence of the energy shifts obtained with tweedifisource oper-
ators. In the second calculation we have carried out two-state analysgsthe diagonalization
method with the Z 2 correlation function matrix. Based on these results we have concluded tha
the ground state is a bound state at the heavy quark mass in both the channels

While similar bound state in thkSy channel was observed in recét= 2+ 1 QCD calcula-
tion atmy; = 390 MeV [3], the existence of the bound state looks odd from the expeté@int
of view. We expect that the bound state vanishes at some lighter quarkwiese the scattering
length diverges changing the sign from negative to positive. Furtlieicten of the quark mass
would decrease the scattering length. Confirmation of this scenario retpiirerestigate the quark
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mass dependences of the binding energy and the scattering length. Wehisastudy to future
work.
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